Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems.
"synopsis" may belong to another edition of this title.
US$ 33.84 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 176. Seller Inventory # 26128847168
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems. 176 pp. Englisch. Seller Inventory # 9783838335292
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 176 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Seller Inventory # 131707551
Quantity: 4 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all. Seller Inventory # 5414098
Quantity: Over 20 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 176. Seller Inventory # 18128847178
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 176 pp. Englisch. Seller Inventory # 9783838335292
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems. Seller Inventory # 9783838335292
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79038383352956
Quantity: 1 available