Video compression is an active area for potential research. Due to the limitations in the available bandwidth and storage space for high quality multimedia content like - video broadcasting and DVD video data, video compression has become very much necessary to keep up the ever growing demand, yet maintaining the quality in decoded video. Motion Estimation technique in a video coder takes advantage of the temporal redundancy present in video data to achieve substantial compression. The block matching efficiency of the Motion Estimation algorithm, feasibility for hardware implementation and multiple frame storage delays are some of the key challenges faced in implementing a Motion Estimation block. In this work, a software model of Motion Estimation block for H.264 Advanced Video Coder is designed. One Step Search Motion Estimation algorithm is chosen for hardware modeling. The architecture of the model is designed to maximize the throughput of the system by using dual residual energy computation and comparison units for parallel processing of frame data. The hardware model is succesfully implemented and tested on Xilinx Virtex-4 FPGA.
"synopsis" may belong to another edition of this title.
Mr Vikram received B.E. in E&C from Bangalore University (India) and M.Sc[Engg] in VLSI System Design from Coventry University (UK). He is currently pursuing PhD in Computer Systems Engineering at University of South Australia. He was working as Software Engineer at Motorola and Senior Software Engineer at SoftJin Technologies in India.
"About this title" may belong to another edition of this title.
US$ 26.98 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Video compression is an active area for potential research. Due to the limitations in the available bandwidth and storage space for high quality multimedia content like - video broadcasting and DVD video data, video compression has become very much necessary to keep up the ever growing demand, yet maintaining the quality in decoded video. Motion Estimation technique in a video coder takes advantage of the temporal redundancy present in video data to achieve substantial compression. The block matching efficiency of the Motion Estimation algorithm, feasibility for hardware implementation and multiple frame storage delays are some of the key challenges faced in implementing a Motion Estimation block. In this work, a software model of Motion Estimation block for H.264 Advanced Video Coder is designed. One Step Search Motion Estimation algorithm is chosen for hardware modeling. The architecture of the model is designed to maximize the throughput of the system by using dual residual energy computation and comparison units for parallel processing of frame data. The hardware model is succesfully implemented and tested on Xilinx Virtex-4 FPGA. 76 pp. Englisch. Seller Inventory # 9783843375993
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Arkalgud Chandrasetty VikramMr Vikram received B.E. in E&C from Bangalore University (India) and M.Sc[Engg] in VLSI System Design from Coventry University (UK). He is currently pursuing PhD in Computer Systems Engineering at Universi. Seller Inventory # 5467480
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Video compression is an active area for potential research. Due to the limitations in the available bandwidth and storage space for high quality multimedia content like - video broadcasting and DVD video data, video compression has become very much necessary to keep up the ever growing demand, yet maintaining the quality in decoded video. Motion Estimation technique in a video coder takes advantage of the temporal redundancy present in video data to achieve substantial compression. The block matching efficiency of the Motion Estimation algorithm, feasibility for hardware implementation and multiple frame storage delays are some of the key challenges faced in implementing a Motion Estimation block. In this work, a software model of Motion Estimation block for H.264 Advanced Video Coder is designed. One Step Search Motion Estimation algorithm is chosen for hardware modeling. The architecture of the model is designed to maximize the throughput of the system by using dual residual energy computation and comparison units for parallel processing of frame data. The hardware model is succesfully implemented and tested on Xilinx Virtex-4 FPGA.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Seller Inventory # 9783843375993
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Video compression is an active area for potential research. Due to the limitations in the available bandwidth and storage space for high quality multimedia content like - video broadcasting and DVD video data, video compression has become very much necessary to keep up the ever growing demand, yet maintaining the quality in decoded video. Motion Estimation technique in a video coder takes advantage of the temporal redundancy present in video data to achieve substantial compression. The block matching efficiency of the Motion Estimation algorithm, feasibility for hardware implementation and multiple frame storage delays are some of the key challenges faced in implementing a Motion Estimation block. In this work, a software model of Motion Estimation block for H.264 Advanced Video Coder is designed. One Step Search Motion Estimation algorithm is chosen for hardware modeling. The architecture of the model is designed to maximize the throughput of the system by using dual residual energy computation and comparison units for parallel processing of frame data. The hardware model is succesfully implemented and tested on Xilinx Virtex-4 FPGA. Seller Inventory # 9783843375993
Quantity: 1 available