The major objective of this research is to improve the performance of conveyor-belt grain dryers by designing an intelligent control system utilizing the capabilities of the adaptive neuro-fuzzy inference system (ANFIS) to model and control the drying process. To achieve this objective, a laboratory-scale conveyor-belt grain dryer was specifically fabricated for this study. As the main controller in this work, a simplified ANFIS structure is proposed to act as a proportional-integral-derivative (PID)-like feedback controller to control nonlinear systems. This controller has several advantages over its conventional ANFIS counterpart, particularly the reduction in processing time. Moreover, three evolutionary algorithms (EAs), in particular a real-coded genetic algorithm (GA), a particle swarm optimization (PSO), and a global-best harmony search (GHS), were separately used to train the proposed controller and to determine its scaling factors. The simplified ANFIS controller was then applied to control the developed ANFIS-based dryer model. From all the simulation tests, the simplified ANFIS controller has proved its remarkable ability in controlling the grain drying process.
"synopsis" may belong to another edition of this title.
Omar F. Lutfy was born in Baghdad, Iraq in 1977. He received the B.Sc. degree in Computers Engineering from the Control and Systems Engineering Department, University of Technology, Baghdad-Iraq in 2000. In 2002, he obtained his M.Sc. degree in Mechatronics Engineering. In 2011, he received the Ph.D degree from Universiti Putra Malaysia (UPM).
"About this title" may belong to another edition of this title.
US$ 33.20 shipping from United Kingdom to U.S.A.
Destination, rates & speedsUS$ 25.68 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The major objective of this research is to improve the performance of conveyor-belt grain dryers by designing an intelligent control system utilizing the capabilities of the adaptive neuro-fuzzy inference system (ANFIS) to model and control the drying process. To achieve this objective, a laboratory-scale conveyor-belt grain dryer was specifically fabricated for this study. As the main controller in this work, a simplified ANFIS structure is proposed to act as a proportional-integral-derivative (PID)-like feedback controller to control nonlinear systems. This controller has several advantages over its conventional ANFIS counterpart, particularly the reduction in processing time. Moreover, three evolutionary algorithms (EAs), in particular a real-coded genetic algorithm (GA), a particle swarm optimization (PSO), and a global-best harmony search (GHS), were separately used to train the proposed controller and to determine its scaling factors. The simplified ANFIS controller was then applied to control the developed ANFIS-based dryer model. From all the simulation tests, the simplified ANFIS controller has proved its remarkable ability in controlling the grain drying process. 244 pp. Englisch. Seller Inventory # 9783846584941
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The major objective of this research is to improve the performance of conveyor-belt grain dryers by designing an intelligent control system utilizing the capabilities of the adaptive neuro-fuzzy inference system (ANFIS) to model and control the drying process. To achieve this objective, a laboratory-scale conveyor-belt grain dryer was specifically fabricated for this study. As the main controller in this work, a simplified ANFIS structure is proposed to act as a proportional-integral-derivative (PID)-like feedback controller to control nonlinear systems. This controller has several advantages over its conventional ANFIS counterpart, particularly the reduction in processing time. Moreover, three evolutionary algorithms (EAs), in particular a real-coded genetic algorithm (GA), a particle swarm optimization (PSO), and a global-best harmony search (GHS), were separately used to train the proposed controller and to determine its scaling factors. The simplified ANFIS controller was then applied to control the developed ANFIS-based dryer model. From all the simulation tests, the simplified ANFIS controller has proved its remarkable ability in controlling the grain drying process. Seller Inventory # 9783846584941
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: F. Lutfy OmarOmar F. Lutfy was born in Baghdad, Iraq in 1977. He received the B.Sc. degree in Computers Engineering from the Control and Systems Engineering Department, University of Technology, Baghdad-Iraq in 2000. In 2002, he obta. Seller Inventory # 5501343
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 244. Seller Inventory # 2698162579
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 1898162585
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA77338465849406
Quantity: 1 available