The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through "Tesseract" which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter.
"synopsis" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110261530
Quantity: Over 20 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9786203194814
Quantity: 2 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9786203194814
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9786203194814
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9786203194814
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9786203194814_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9786203194814
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through 'Tesseract' which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter. 76 pp. Englisch. Seller Inventory # 9786203194814
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ranganayakulu S. V.S. V. Ranganayakulu is currently working as Dean (R&D), in Guru Nanak Institutions Technical Campus(Autonomous) and holds M.Sc (Physics) in Electronics as specialization, M.Phil (Physics) in the area of Liquid Crys. Seller Inventory # 452575528
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -The present study developed an autonomous algorithm for the Convective cell Identification and TRAcking (CITRA) using DWR reflectivity images. The CITRA algorithm is implemented in Python using Deep learning technique of Neural Networks. Optical Character Recognition is used in the present study through 'Tesseract' which is an unsupervised Neural Network module based on LSTM which analyses the input dimensional pixel array/image and outputs high-level strings. The algorithm runs through the DWR reflectivity image pixel values and recognizes the intensities of the pixels (>=30 dB) and segregates convective cells along with other estimated cell properties such as centroid of the storm, the area covered, distance and direction from the radar centre. The performance of CITRA algorithm was tested on different convective storms and it could successfully identify and track them along with other physical properties of the convective cells. Further, we have demonstrated the potential application of CITRA algorithm on the evolution of convective cells detected within the radar range. Presently, CITRA algorithm takes only reflectivity images as a single input parameter.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Seller Inventory # 9786203194814
Quantity: 2 available