Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26396035685
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 401390010
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18396035695
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main aim of the text is to give a review of fast kernel expansions, FOURIER features and rapid numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in datasets with a large number of samples. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. The manuscript contains interesting applications to Computer Vision (CV) and Deep Learning (DL) which can serve as guideline for novel researchers in the topic. In particular we provide a primer on facial recognition and directives for the use of large-scale techniques of Vision in Robotics.The main aim of the text is to give a review of fast kernel expansions, FOURIER features and rapid numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in datasets with a large number of samples. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. The manuscript contains interesting applications to Computer Vision (CV) and Deep Learning (DL) which can serve as guideline for novel researchers in the topic. In particular we provide a primer on facial recognition and directives for the use of large-scale techniques of Vision in Robotics. 88 pp. Englisch. Seller Inventory # 9786203925388
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The main aim of the text is to give a review of fast kernel expansions, FOURIER features and rapid numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in datasets with a large number of samples. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. The manuscript contains interesting applications to Computer Vision (CV) and Deep Learning (DL) which can serve as guideline for novel researchers in the topic. In particular we provide a primer on facial recognition and directives for the use of large-scale techniques of Vision in Robotics.The main aim of the text is to give a review of fast kernel expansions, FOURIER features and rapid numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in datasets with a large number of samples. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. The manuscript contains interesting applications to Computer Vision (CV) and Deep Learning (DL) which can serve as guideline for novel researchers in the topic. In particular we provide a primer on facial recognition and directives for the use of large-scale techniques of Vision in Robotics. Seller Inventory # 9786203925388
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 485142425
Quantity: Over 20 available