We are presently observing a paradigm change in designing complex SoC as it occurs roughly every twelve years due to the exponentially increasing number of transistors on a chip. This design discontinuity, as all previous ones, is characterized by a move to a higher level of abstraction. This is required to cope with the rapidly increasing design costs. While the present paradigm change shares the move to a higher level of abstraction with all previous ones, there exists also a key difference. For the ?rst time shrinking geometries do not leadtoacorrespondingincreaseofperformance. InarecenttalkLisaSuofIBM pointed out that in 65nm technology only about 25% of performance increase can be attributed to scaling geometries while the lion share is due to innovative processor architecture [1]. We believe that this fact will revolutionize the entire semiconductor industry. What is the reason for the end of the traditional view of Moore’s law? It is instructive to look at the major drivers of the semiconductor industry: wireless communications and multimedia. Both areas are characterized by a rapidly increasingdemandofcomputationalpowerinordertoprocessthesophisticated algorithmsnecessarytooptimallyutilizethepreciousresourcebandwidth. The computational power cannot be provided by traditional processor architectures and shared bus type of interconnects. The simple reason for this fact is energy ef?ciency: there exist orders of magnitude between the energy ef?ciency of an algorithm implemented as a ?xed functionality computational element and of a software implementation on a processor.
"synopsis" may belong to another edition of this title.
From the reviews:
"The book covers most of the major areas of system-level design and modeling, and much of the work described has been incorporated into a commercial ESL tool ... . This book’s scope and range of pragmatic ideas make it valuable for a wide audience. ... When combined with the extensive list of references (260!), this is a very valuable resource for anyone interested in the area ... . It should resonate with students, researchers, and practical designers ... ." (Grant Martin, IEEE Design and Test of Computers, May-June, 2007)
"About this title" may belong to another edition of this title.
US$ 16.27 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789048172023_new
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110338401
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Integrated System-Level Modeling of Network-on-Chip Enabled Multi-Processor Platforms first gives a comprehensive update on recent developments in the area of SoC platforms and ESL design methodologies. The main contribution is the rigorous definition of a framework for modeling at the timing approximate level of abstraction. Subsequently this book presents a set of tools for the creation and exploration of timing approximate SoC platform models. 216 pp. Englisch. Seller Inventory # 9789048172023
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. General introduction to SoC platform design and ESL design methodologiesComprehensive overview of the state-of-the-art research on ESL designLatest update on SystemC Transaction Level Modeling and standardizationTransaction-level tim. Seller Inventory # 5821046
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9789048172023
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - We are presently observing a paradigm change in designing complex SoC as it occurs roughly every twelve years due to the exponentially increasing number of transistors on a chip. This design discontinuity, as all previous ones, is characterized by a move to a higher level of abstraction. This is required to cope with the rapidly increasing design costs. While the present paradigm change shares the move to a higher level of abstraction with all previous ones, there exists also a key difference. For the rst time shrinking geometries do not leadtoacorrespondingincreaseofperformance. InarecenttalkLisaSuofIBM pointed out that in 65nm technology only about 25% of performance increase can be attributed to scaling geometries while the lion share is due to innovative processor architecture [1]. We believe that this fact will revolutionize the entire semiconductor industry. What is the reason for the end of the traditional view of Moore's law It is instructive to look at the major drivers of the semiconductor industry: wireless communications and multimedia. Both areas are characterized by a rapidly increasingdemandofcomputationalpowerinordertoprocessthesophisticated algorithmsnecessarytooptimallyutilizethepreciousresourcebandwidth. The computational power cannot be provided by traditional processor architectures and shared bus type of interconnects. The simple reason for this fact is energy ef ciency: there exist orders of magnitude between the energy ef ciency of an algorithm implemented as a xed functionality computational element and of a software implementation on a processor. Seller Inventory # 9789048172023
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -We are presently observing a paradigm change in designing complex SoC as it occurs roughly every twelve years due to the exponentially increasing number of transistors on a chip. This design discontinuity, as all previous ones, is characterized by a move to a higher level of abstraction. This is required to cope with the rapidly increasing design costs. While the present paradigm change shares the move to a higher level of abstraction with all previous ones, there exists also a key difference. For the rst time shrinking geometries do not leadtoacorrespondingincreaseofperformance. InarecenttalkLisaSuofIBM pointed out that in 65nm technology only about 25% of performance increase can be attributed to scaling geometries while the lion share is due to innovative processor architecture [1]. We believe that this fact will revolutionize the entire semiconductor industry. What is the reason for the end of the traditional view of Moore¿s law It is instructive to look at the major drivers of the semiconductor industry: wireless communications and multimedia. Both areas are characterized by a rapidly increasingdemandofcomputationalpowerinordertoprocessthesophisticated algorithmsnecessarytooptimallyutilizethepreciousresourcebandwidth. The computational power cannot be provided by traditional processor architectures and shared bus type of interconnects. The simple reason for this fact is energy ef ciency: there exist orders of magnitude between the energy ef ciency of an algorithm implemented as a xed functionality computational element and of a software implementation on a processor.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Seller Inventory # 9789048172023
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 216 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5802212
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 214 pages. 9.45x6.30x0.49 inches. In Stock. Seller Inventory # x-9048172020
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 216. Seller Inventory # 183094321
Quantity: 4 available