1 Introduction to Machine Learning Part Two. 2 Two-stage Least Squares. 3 Multiple Imputations. 4 Bhattacharya Analysis. 5 Quality-of-life (QOL) Assessments with Odds Ratios. 6 Logistic Regression for Assessing Novel Diagnostic Tests against Control.7 Validating Surrogate Endpoints. 8 Two-dimensional Clustering. 9 Multidimensional Clustering. 10 Anomaly Detection. 11 Association Rule Analysis. 12 Multidimensional Scaling. 13 Correspondence Analysis. 14 Multivariate Analysis of Time Series. 15 Support Vector Machines. 16 Bayesian Networks. 17 Protein and DNA Sequence Mining. 18 Continuous Sequential Techniques. 19 Discrete Wavelet Analysis. 20 Machine Learning and Common Sense. Statistical Tables. Index.
"synopsis" may belong to another edition of this title.
From the reviews:
“This is the second volume of a novel publication on machine learning in medicine that details statistical analysis of complex data with many variables. ... The intended audience includes physicians, clinical researchers, physicians in training, statisticians, and medical students as well as master’s and doctoral students in biostatistics and epidemiology. ... The simple language and well-organized chapters are unsurpassed attributes of this book. It is an exceptional resource for a quick review of machine learning in medicine.” (Goral Panchal, Doody’s Book Reviews, October, 2013)"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want