An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era. The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function.
"synopsis" may belong to another edition of this title.
Why study cytochrome complexes? An answer is in the subtitle of the book “Evolution, Structures, Energy Transduction, and Signaling”. Studies on the cytochrome family of proteins include and, influence, a wide range of theoretical and computational approaches, as well as a broad cross-section of experimental techniques. Studies of cytochromes and cytochrome complexes thus utilize an extraordinary range of experimental approaches, described in this volume, which include: computational biology, genetics, macromolecular biochemistry, molecular biology, the physics of charge transfer, structure analysis using x-ray and electron diffraction, and ultra-fast spectroscopy. This information and understanding exerts an influence on a wide spectrum of subjects in modern biology, including molecular evolution, mechanisms of membrane-based respiratory and photosynthetic energy transduction, theory of charge transfer in proteins, structure-function of large hetero-oligomeric membrane proteins, including lipid-protein interactions, and trans-membrane signaling.
The book starts with a historical introduction that focuses on research in the first half of the 20th century, and the pre-World War II development in England of the field and its notation, proceeding to a discussion of the evolution of cytochromes and hemes, fundamentals of the theory of electron transfer in proteins, and an extensive description of molecular structures of cytochromes and of the cytochrome complexes. The latter information has had a major impact on the broad field of the structure-function of integral membrane proteins, the newest area of macromolecular structural biology. The book includes thorough discussions on cytochrome oxidase including the use of the new non-destructive femtosecond “diffraction before destruction” X-ray free electron laser for diffraction analysis, and major sections on signaling, super-complexes, state transitions, and the interaction of linear and cyclic electron transport chains.The extent of fundamental research areas included in this book makes it an important resource for the teaching of broad aspects of biological energy transduction to advanced undergraduate and graduate students with interests in biology, biochemistry, biological engineering, chemistry, and biophysics.
"About this title" may belong to another edition of this title.
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Encyclopedic discussion of multi-faceted functions in energy transduction, evolution, and signaling Perspective on a major group of integral membrane proteins Modern review of the cytochrome family extending over prokaryotes and eukaryote. Seller Inventory # 79869275
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era. The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. 788 pp. Englisch. Seller Inventory # 9789401774796
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era. The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 788 pp. Englisch. Seller Inventory # 9789401774796
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era. The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function. Seller Inventory # 9789401774796