Items related to Elements of Hilbert Spaces and Operator Theory

Elements of Hilbert Spaces and Operator Theory - Softcover

 
9789811097652: Elements of Hilbert Spaces and Operator Theory

Synopsis

The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators.

In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

"synopsis" may belong to another edition of this title.

About the Author

HARKRISHAN LAL VASUDEVA had been a visiting professor of mathematics at Indian Institute of Science Education and Research, Mohali, India, between 2010 -2016. Earlier, he taught at Panjab University, Chandigarh, India, and held visiting positions in the University of Sheffield, the U.K., and the University of Graz, Austria, for research projects. He has numerous research articles to his credit in various international journals and has co-authored several books, two of which have been published by Springer.

From the Back Cover

The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators.

In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9789811030192: Elements of Hilbert Spaces and Operator Theory

Featured Edition

ISBN 10:  9811030197 ISBN 13:  9789811030192
Publisher: Springer, 2017
Hardcover

Search results for Elements of Hilbert Spaces and Operator Theory

Seller Image

Harkrishan Lal Vasudeva
Published by Springer Nature Singapore, 2018
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Softcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents an introduction to the geometry of Hilbert spaces and operator theory Discusses Legendre, Hermite, Laguerre polynomials and Rademacher functions and their applications Highlights applications of Hilbert space theory to diverse ar. Seller Inventory # 449935739

Contact seller

Buy New

US$ 175.05
Convert currency
Shipping: US$ 57.44
From Germany to U.S.A.
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Harkrishan Lal Vasudeva
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book. 536 pp. Englisch. Seller Inventory # 9789811097652

Contact seller

Buy New

US$ 206.76
Convert currency
Shipping: US$ 26.97
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Stock Image

Vasudeva, Harkrishan Lal
Published by Springer, 2018
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Softcover

Seller: Books Puddle, New York, NY, U.S.A.

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. pp. 535. Seller Inventory # 26382023660

Contact seller

Buy New

US$ 235.85
Convert currency
Shipping: US$ 3.99
Within U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Vasudeva, Harkrishan Lal
Published by Springer, 2018
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Softcover
Print on Demand

Seller: Majestic Books, Hounslow, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Print on Demand pp. 535. Seller Inventory # 380799027

Contact seller

Buy New

US$ 246.91
Convert currency
Shipping: US$ 8.81
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Stock Image

Vasudeva, Harkrishan Lal
Published by Springer, 2018
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Paperback

Seller: Mispah books, Redhill, SURRE, United Kingdom

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Paperback. Condition: New. New. book. Seller Inventory # ERICA80098110976586

Contact seller

Buy New

US$ 231.72
Convert currency
Shipping: US$ 33.88
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Harkrishan Lal Vasudeva
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 536 pp. Englisch. Seller Inventory # 9789811097652

Contact seller

Buy New

US$ 206.76
Convert currency
Shipping: US$ 70.35
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 2 available

Add to basket

Stock Image

Vasudeva, Harkrishan Lal
Published by Springer, 2018
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Softcover
Print on Demand

Seller: Biblios, Frankfurt am main, HESSE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. PRINT ON DEMAND pp. 535. Seller Inventory # 18382023654

Contact seller

Buy New

US$ 267.84
Convert currency
Shipping: US$ 11.67
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 4 available

Add to basket

Seller Image

Harkrishan Lal Vasudeva
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book. Seller Inventory # 9789811097652

Contact seller

Buy New

US$ 211.46
Convert currency
Shipping: US$ 75.07
From Germany to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Harkrishan Lal Vasudeva
Published by Springer, 2018
ISBN 10: 9811097658 ISBN 13: 9789811097652
New Paperback

Seller: Revaluation Books, Exeter, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Paperback. Condition: Brand New. reprint edition. 536 pages. 9.25x6.10x1.21 inches. In Stock. Seller Inventory # zk9811097658

Contact seller

Buy New

US$ 330.02
Convert currency
Shipping: US$ 33.88
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket