This book aims to foster machine and deep learning approaches to data-driven applications, in which data governs the behaviour of applications. Applications of Artificial intelligence (AI)-based systems play a significant role in today’s software industry. The sensors data from hardware-based systems making a mammoth database, increasing day by day. Recent advances in big data generation and management have created an avenue for decision-makers to utilize these huge volumes of data for different purposes and analyses. AI-based application developers have long utilized conventional machine learning techniques to design better user interfaces and vulnerability predictions. However, with the advancement of deep learning-based and neural-based networks and algorithms, researchers are able to explore and learn more about data and their exposed relationships or hidden features. This new trend of developing data-driven application systems seeks the adaptation of computational neural network algorithms and techniques in many application domains, including software systems, cyber security, human activity recognition, and behavioural modelling. As such, computational neural networks algorithms can be refined to address problems in data-driven applications. Original research and review works with model and build data-driven applications using computational algorithm are included as chapters in this book.
"synopsis" may belong to another edition of this title.
Dr. Jagdish Chand Bansal is Associate Professor at South Asian University New Delhi and Visiting Faculty at Maths and Computer Science, Liverpool Hope University UK. Dr. Bansal has obtained his Ph.D. in Mathematics from IIT Roorkee. Before joining SAU New Delhi, he has worked as Assistant Professor at ABV-Indian Institute of Information Technology and Management Gwalior and BITS Pilani, India. His primary area of interest is swarm intelligence and nature-inspired optimization techniques. Recently, he proposed a fission–fusion social structure-based optimization algorithm, Spider Monkey Optimization (SMO), which is being applied to various problems from the engineering domain. He has published more than 60 research papers in various international journals/conferences. He has also received Gold Medal at UG and PG levels. He is Series Editor of Algorithms for Intelligent Systems (AIS) and Studies in Autonomic, Data-driven and Industrial Computing published by Springer. He is Editor-in-Chief of International Journal of Swarm Intelligence (IJSI) published by Inderscience. He is also Associate Editor of IEEE ACCESS (IEEE) and ARRAY (Elsevier). He is the steering committee member and the general chair of the annual conference series SocProS. He is the general secretary of Soft Computing Research Society (SCRS).
This book aims to foster machine and deep learning approaches to data-driven applications, in which data governs the behaviour of applications. Applications of Artificial intelligence (AI)-based systems play a significant role in today’s software industry. The sensors data from hardware-based systems making a mammoth database, increasing day by day. Recent advances in big data generation and management have created an avenue for decision-makers to utilize these huge volumes of data for different purposes and analyses. AI-based application developers have long utilized conventional machine learning techniques to design better user interfaces and vulnerability predictions. However, with the advancement of deep learning-based and neural-based networks and algorithms, researchers are able to explore and learn more about data and their exposed relationships or hidden features. This new trend of developing data-driven application systems seeks the adaptation of computational neural network algorithms and techniques in many application domains, including software systems, cyber security, human activity recognition, and behavioural modelling. As such, computational neural networks algorithms can be refined to address problems in data-driven applications. Original research and review works with model and build data-driven applications using computational algorithm are included as chapters in this book.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0412070097781
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789813369184_new
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9789813369184
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book aims to foster machine and deep learning approaches to data-driven applications, in which data governs the behaviour of applications. Applications of Artificial intelligence (AI)-based systems play a significant role in today's software industry. The sensors data from hardware-based systems making a mammoth database, increasing day by day. Recent advances in big data generation and management have created an avenue for decision-makers to utilize these huge volumes of data for different purposes and analyses. AI-based application developers have long utilized conventional machine learning techniques to design better user interfaces and vulnerability predictions. However, with the advancement of deep learning-based and neural-based networks and algorithms, researchers are able to explore and learn more about data and their exposed relationships or hidden features. This new trend of developing data-driven application systems seeks the adaptation of computational neural network algorithms and techniques in many application domains, including software systems, cyber security, human activity recognition, and behavioural modelling. As such, computational neural networks algorithms can be refined to address problems in data-driven applications. Original research and review works with model and build data-driven applications using computational algorithm are included as chapters in this book. 196 pp. Englisch. Seller Inventory # 9789813369184
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discusses machine and deep learning approaches to data-driven applicationsProvides original works presented at GUCON 2020Serves as a reference for researchers and practitioners in academia and industryDr. Jagdish Chand Bansa. Seller Inventory # 437752913
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book aims to foster machine and deep learning approaches to data-driven applications, in which data governs the behaviour of applications. Applications of Artificial intelligence (AI)-based systems play a significant role in today's software industry. The sensors data from hardware-based systems making a mammoth database, increasing day by day. Recent advances in big data generation and management have created an avenue for decision-makers to utilize these huge volumes of data for different purposes and analyses. AI-based application developers have long utilized conventional machine learning techniques to design better user interfaces and vulnerability predictions. However, with the advancement of deep learning-based and neural-based networks and algorithms, researchers are able to explore and learn more about data and their exposed relationships or hidden features. This new trend of developing data-driven application systems seeks the adaptation of computational neural network algorithms and techniques in many application domains, including software systems, cyber security, human activity recognition, and behavioural modelling. As such, computational neural networks algorithms can be refined to address problems in data-driven applications. Original research and review works with model and build data-driven applications using computational algorithm are included as chapters in this book. Seller Inventory # 9789813369184
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st ed. 2021 edition NO-PA16APR2015-KAP. Seller Inventory # 26389114126
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 196 pages. 9.25x6.10x0.46 inches. In Stock. Seller Inventory # x-9813369183
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 390518481
Quantity: 4 available
Seller: dsmbooks, Liverpool, United Kingdom
Paperback. Condition: New. New. book. Seller Inventory # D8F0-0-M-9813369183-6
Quantity: 1 available