Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.
From Centralized to Distributed AI
Mathematical & Computational Foundations
Comparing Centralized vs. Distributed AI
Biological Parallels
Real-World Applications
Towards a Global Digital Brain
This book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence.
"synopsis" may belong to another edition of this title.
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Print on Demand. Seller Inventory # I-9798311336123
Quantity: Over 20 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Paperback. Condition: new. Paperback. Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.Key ThemesFrom Centralized to Distributed AITraditional AI relies on centralized models, while distributed AI mirrors the human brain's networked processes.Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.Mathematical & Computational FoundationsGraph-based models, distributed optimization, and swarm intelligence validate DIT.Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.Comparing Centralized vs. Distributed AIScalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.Fault Tolerance: No single point of failure; systems adapt dynamically.Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.Biological ParallelsThe Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.Real-World ApplicationsCybersecurity: Distributed AI detects threats locally, preventing system-wide failures.Healthcare: Federated learning enables AI-driven medical research without data centralization.Finance: AI-powered fraud detection networks collaborate across institutions.Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.Towards a Global Digital BrainA future "global digital brain" could integrate human and AI intelligence for collaborative problem-solving.Ethical concerns include governance, accountability, and security in decentralized AI.ConclusionThis book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9798311336123
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9798311336123_new
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.Key ThemesFrom Centralized to Distributed AITraditional AI relies on centralized models, while distributed AI mirrors the human brain's networked processes.Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.Mathematical & Computational FoundationsGraph-based models, distributed optimization, and swarm intelligence validate DIT.Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.Comparing Centralized vs. Distributed AIScalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.Fault Tolerance: No single point of failure; systems adapt dynamically.Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.Biological ParallelsThe Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.Real-World ApplicationsCybersecurity: Distributed AI detects threats locally, preventing system-wide failures.Healthcare: Federated learning enables AI-driven medical research without data centralization.Finance: AI-powered fraud detection networks collaborate across institutions.Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.Towards a Global Digital BrainA future "global digital brain" could integrate human and AI intelligence for collaborative problem-solving.Ethical concerns include governance, accountability, and security in decentralized AI.ConclusionThis book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9798311336123
Quantity: 1 available