This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. Topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functins and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V.D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission.
The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings and others. The main objective of this book is to provide a purely algebraic, self-contained and in-depth exposition of the theory of function fields.
This new edition, published in the series Graduate Texts in Mathematics, has been considerably expanded. Moreover, the present edition contains numerous exercises. Some of them are fairly easy and help the reader to understand the basic material. Other exercises are more advanced and cover additional material which could not be included in the text.
This volume is mainly addressed to graduate students in mathematics and theoretical computer science, cryptography, coding theory and electrical engineering.