Applied Deep Learning with Python
Alex Galea
Sold by PBShop.store UK, Fairford, GLOS, United Kingdom
AbeBooks Seller since June 11, 1999
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by PBShop.store UK, Fairford, GLOS, United Kingdom
AbeBooks Seller since June 11, 1999
Condition: New
Quantity: Over 20 available
Add to basketNew Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller Inventory # L0-9781789804744
A hands-on guide to deep learning that's filled with intuitive explanations and engaging practical examples
Taking an approach that uses the latest developments in the Python ecosystem, you'll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We'll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It's okay if these terms seem overwhelming; we'll show you how to put them to work.
We'll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It's after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data.
By guiding you through a trained neural network, we'll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We'll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively.
If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.
Alex Galea has been professionally practicing data analytics since graduating with a Master's degree in Physics from the University of Guelph, Canada. He developed a keen interest in Python while researching quantum gases as part of his graduate studies. Alex is currently doing web data analytics, where Python continues to play a key role in his work. He is a frequent blogger about data-centric projects that involve Python and Jupyter Notebooks.
Luis Capelo is a Harvard-trained analyst and a programmer, who specializes in designing and developing data science products. He is based in New York City, America. Luis is the head of the Data Products team at Forbes, where they investigate new techniques for optimizing article performance and create clever bots that help them distribute their content. He worked for the United Nations as part of the Humanitarian Data Exchange team (founders of the Center for Humanitarian Data). Later on, he led a team of scientists at the Flowminder Foundation, developing models for assisting the humanitarian community. Luis is a native of Havana, Cuba, and the founder and owner of a small consultancy firm dedicated to supporting the nascent Cuban private sector.
"About this title" may belong to another edition of this title.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Orders are shipped from our UK warehouse. Delivery thereafter is between 4 and 14 business days. Please contact us if you have any queries about our services or products.