Complex-valued Neural Networks With Multi-valued Neurons
Aizenberg, Igor
Sold by Revaluation Books, Exeter, United Kingdom
AbeBooks Seller since January 6, 2003
New - Hardcover
Condition: New
Quantity: 2 available
Add to basketSold by Revaluation Books, Exeter, United Kingdom
AbeBooks Seller since January 6, 2003
Condition: New
Quantity: 2 available
Add to basket2011 edition. 280 pages. 9.50x6.50x0.75 inches. In Stock.
Seller Inventory # x-3642203523
Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.
This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.
These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.
The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.
Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts.
This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information.
These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories.
The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.
"About this title" may belong to another edition of this title.
Legal entity name: Edward Bowditch Ltd
Legal entity form: Limited company
Business correspondence address: Exstowe, Exton, Exeter, EX3 0PP
Company registration number: 04916632
VAT registration: GB834241546
Authorised representative: Mr. E. Bowditch
Orders usually dispatched within two working days. Please note that at this time all domestic United Kingdom orders are sent by trackable UPS courier, we choose not to offer a lower cost alternative.
Order quantity | 7 to 18 business days | 2 to 5 business days |
---|---|---|
First item | US$ 33.94 | US$ 33.94 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.