From
Best Price, Torrance, CA, U.S.A.
Seller rating 5 out of 5 stars
AbeBooks Seller since August 30, 2024
SUPER FAST SHIPPING. Seller Inventory # 9780323852142
The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm.
About the Authors:
Dr. Ramesh Chandra Poonia is a Professor at the Department of Computer Science, CHRIST (Deemed to be University), Bangalore, India. Recently completed his Postdoctoral Fellowship from CPS Lab, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Ålesund, Norway. He has received his Ph.D. degree in Computer Science from Banasthali University, Banasthali, India in July 2013. His research interests are Cyber-Physical Systems, Network Protocol Evaluation and Artificial Intelligence. He is Chief Editor of TARU Journal of Sustainable Technologies and Computing (TJSTC) and Associate Editor of the Journal of Sustainable Computing: Informatics and Systems, Elsevier. He also serves in the editorial boards of a few international journals. He is main author and co-author of 06 books and an editor of more than 25 special issue of journals and books including Springer, CRC Press – Taylor and Francis, IGI Global and Elsevier, edited books and Springer conference proceedings and has authored/co-authored over 65 research publications in peer-reviewed reputed journals, book chapters and conference proceedings.
Dr. Vijander Singh is working as Assistant Professor, Department of Computer Science and Engineering, Manipal University Jaipur, India. He received Ph.D. degree from Banasthali University, Banasthali, India, in April 2017. He has published 25 research papers in indexed journals and several book chapters for international publishers. He authored two books and handled/handling journals of international repute such as Taylor & Francis, Taru Publication, IGI Global, Inderscienc, etc. as guest editor. He is an associate editor of TARU Journal of Sustainable Technologies and Computing (TJSTC). He has organized several International Conferences, FDPs, and Workshops as a core team member of the organizing committee. His research area includes Machine Learning, Deep Learning, Precision Agriculture, and Networking.
Dr. Soumya Ranjan Nayak now holds the position of Assistant Professor in the School of Computer Engineering at Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, located in Odisha, India. He obtained a Doctor of Philosophy (Ph.D) and Master of Technology (M.Tech) in Computer Science and Engineering under a scholarship provided by the Ministry of Human Resource Development (MHRD) of the Government of India. These degrees were earned at CET, BPUT Rourkela, India. Prior to this, he completed a Bachelor of Technology (B. Tech) and a Diploma in Computer Science and Engineering. He has authored over 150 articles that have been published in reputable international journals and conferences such as Elsevier, Springer, World Scientific, IOS Press, Taylor & Francis, Hindawi, Inderscience, IGI Global, and others. These publications have undergone a rigorous peer-review process. In addition to the aforementioned accomplishments, the individual has authored 16 book chapters, published 6 books, and obtained 7 Indian patents (with 4 patents being granted). Furthermore, they have secured 4 International patents, all of which have been granted. The researcher's current areas of focus encompass medical picture analysis and classification, machine learning, deep learning, pattern recognition, fractal graphics, and computer vision. The author's writings have garnered over 1500 citations, with an h-index of 24 and an i10-index of 63, as reported by Google Scholar. Dr. Nayak holds the position of an associate editor for several esteemed academic journals, including the Journal of Electronic Imaging (SPIE), Mathematical Problems in Engineering (Hindawi), Journal of Biomedical Imaging (Hindawi), Applied Computational Intelligence and Soft Computing (Hindawi), and PLOS One. He is currently fulfilling the role of a guest editor for special issues of renowned academic journals such as Springer Nature, Elsevier, and Taylor & Franchise. He has been affiliated as a reviewer for numerous esteemed peer-reviewed journals, including Applied Mathematics and Computation, Journal of Applied Remote Sensing, Mathematical Problems in Engineering, International Journal of Light and Electron Optics, Journal of Intelligent and Fuzzy Systems, Future Generation Computer Systems, Pattern Recognition Letters, and others. He has additionally held the Technical Program Committee Member position for several conferences of significant worldwide recognition.
Title: Deep Learning for Sustainable Agriculture (...
Publisher: Academic Press
Publication Date: 2022
Binding: Soft cover
Condition: New
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # e7eae98c60889ed8c318c583825652dc
Quantity: Over 20 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Deep Learning for Sustainable Agriculture | Ramesh Chandra Poonia (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2022 | Academic Press | EAN 9780323852142 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Seller Inventory # 120330279
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 392653404
Quantity: 3 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 390 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. Seller Inventory # __0323852149
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition mon. Seller Inventory # 497310207
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm. Englisch. Seller Inventory # 9780323852142
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26386979203
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. 660. Seller Inventory # B9780323852142
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 43675513-n
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm. Seller Inventory # 9780323852142