Hands-On GPU Programming with Python and CUDA
Tuomanen, Dr. Brian
Sold by Majestic Books, Hounslow, United Kingdom
AbeBooks Seller since January 19, 2007
New - Soft cover
Condition: New
Quantity: 4 available
Add to basketSold by Majestic Books, Hounslow, United Kingdom
AbeBooks Seller since January 19, 2007
Condition: New
Quantity: 4 available
Add to basketPrint on Demand pp. 310.
Seller Inventory # 381926367
Build GPU-accelerated high performing applications with Python 2.7, CUDA 9, and open source libraries such as PyCUDA and scikit-cuda. We recommend the use of Python 2.7 as this version has stable support across all libraries used in this book.
GPU programming is the technique of offloading intensive tasks running on the CPU for faster computing. Hands-On GPU Programming with Python and CUDA will help you discover ways to develop high performing Python apps combining the power of Python and CUDA.
This book will help you hit the ground running-you'll start by learning how to apply Amdahl's law, use a code profiler to identify bottlenecks in your Python code, and set up a GPU programming environment. You'll then see how to query a GPU's features and copy arrays of data to and from its memory. As you make your way through the book, you'll run your code directly on the GPU and write full blown GPU kernels and device functions in CUDA C. You'll even get to grips with profiling GPU code and fully test and debug your code using Nsight IDE. Furthermore, the book covers some well-known NVIDIA libraries such as cuFFT and cuBLAS.
With a solid background in place, you'll be able to develop your very own GPU-based deep neural network from scratch, and explore advanced topics such as warp shuffling, dynamic parallelism, and PTX assembly. Finally, you'll touch up on topics and applications like AI, graphics, and blockchain.
By the end of this book, you'll be confident in solving problems related to data science and high-performance computing with GPU programming.
This book is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. Familiarity with mathematics and physics concepts along with some experience with Python and any C-based programming language will be helpful.
Dr. Brian Tuomanen has been working with CUDA and General-Purpose GPU Programming since 2014. He received his Bachelor of Science in Electrical Engineering from the University of Washington in Seattle, and briefly worked as a Software Engineer before switching to Mathematics for Graduate School. He completed his Ph.D. in Mathematics at the University of Missouri in Columbia, where he first encountered GPU programming as a means for studying scientific problems. Dr. Tuomanen has spoken at the US Army Research Lab about General Purpose GPU programming, and has recently lead GPU integration and development at a Maryland based start-up company. He currently lives and works in the Seattle area.
"About this title" may belong to another edition of this title.
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery