Mastering Probabilistic Graphical Models using Python
Ankan, Ankur
Sold by Chiron Media, Wallingford, United Kingdom
AbeBooks Seller since August 2, 2010
New - Soft cover
Condition: New
Quantity: 10 available
Add to basketSold by Chiron Media, Wallingford, United Kingdom
AbeBooks Seller since August 2, 2010
Condition: New
Quantity: 10 available
Add to basketMaster probabilistic graphical models by learning through real-world problems and illustrative code examples in Python
If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.
Probabilistic graphical models is a technique in machine learning that uses the concepts of graph theory to concisely represent and optimally predict values in our data problems.
Graphical models gives us techniques to find complex patterns in the data and are widely used in the field of speech recognition, information extraction, image segmentation, and modeling gene regulatory networks.
This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also run different inference algorithms on them. There is an entire chapter that goes on to cover Naive Bayes model and Hidden Markov models. These models have been thoroughly discussed using real-world examples.
Ankur Ankan
Ankur Ankan is a BTech graduate from IIT (BHU), Varanasi. He is currently working in the field of data science. He is an open source enthusiast and his major work includes starting pgmpy with four other members. In his free time, he likes to participate in Kaggle competitions.
Abinash Panda
Abinash Panda is an undergraduate from IIT (BHU), Varanasi, and is currently working as a data scientist. He has been a contributor to open source libraries such as the Shogun machine learning toolbox and pgmpy, which he started writing along with four other members. He spends most of his free time on improving pgmpy and helping new contributors.
"About this title" may belong to another edition of this title.
TBA
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.