Stock Image

Microdot: A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

Anthony R. Woodcock

0 ratings by Goodreads
ISBN 10: 1249401100 / ISBN 13: 9781249401100
Published by BiblioScholar
New Condition: New Soft cover
From BuySomeBooks (Las Vegas, NV, U.S.A.)

AbeBooks Seller Since May 21, 2012

Quantity Available: > 20

Buy New
List Price: US$ 49.00
Price: US$ 79.63 Convert Currency
Shipping: US$ 3.95 Within U.S.A. Destination, Rates & Speeds
Add to basket

30 Day Return Policy

About this Item

Paperback. 146 pages. Dimensions: 9.7in. x 7.4in. x 0.3in.As satellites become more complex, the on-board processing capabilities must keep up. Many satellites are an integrated collection of sensors and actuators with many requiring dedicated real-time control to operate correctly. For single processor systems, adding more sensors requires an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors are more costly and consume more power, which can tax a satellites power resources and may lead to shorter satellite lifetimes. Commercial-Off-The-Shelf (COTS) electronic components are usually not acceptable for satellite design because they have not been hardened against the radiation environment of space. An alternative design approach is to use a distributed network of small and low power microcontrollers designed for space to handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRLVSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright- Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable up to 9. 1 MHz. The design was also targeted for fabrication using a radiation-hardened-by-design gate-array library from Mission Research Corporation. The gate-array library is designed for the TSMC 0. 35 micrometer CMOS process. This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Bookseller Inventory # 9781249401100

Ask Seller a Question

Bibliographic Details

Title: Microdot: A Four-Bit Microcontroller ...

Publisher: BiblioScholar

Binding: Paperback

Book Condition:New

Book Type: Paperback

About this title

Synopsis:

As satellites become more complex, the on-board processing capabilities must keep up. Many satellites are an integrated collection of sensors and actuators with many requiring dedicated real-time control to operate correctly. For single processor systems, adding more sensors requires an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors are more costly and consume more power, which can tax a satellite's power resources and may lead to shorter satellite lifetimes. Commercial-Off-The-Shelf (COTS) electronic components are usually not acceptable for satellite design because they have not been hardened against the radiation environment of space. An alternative design approach is to use a distributed network of small and low power microcontrollers designed for space to handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright- Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable up to 9.1 MHz. The design was also targeted for fabrication using a radiation-hardened-by-design gate-array library from Mission Research Corporation. The gate-array library is designed for the TSMC 0.35 micrometer CMOS process.

"About this title" may belong to another edition of this title.

Store Description

BuySomeBooks is great place to get your books online. With over eight million titles available we're sure to have what you're looking for. Despite having a large selection of new books available for immediate shipment and excellent customer service, people still tell us they prefer us because of our prices.

Visit Seller's Storefront

Terms of Sale:

We guarantee the condition of every book as it's described on the Abebooks web
sites. If you're dissatisfied with your purchase (Incorrect Book/Not as
Described/Damaged) or if the order hasn't arrived, you're eligible for a refund
within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.

BuySomeBooks is operated by Drive-On-In, Inc., a Nevada co...

More Information
Shipping Terms:

Orders usually ship within 1-2 business days. Books are shipped from multiple locations so your order may arrive from Las Vegas,NV, Roseburg,OR, La Vergne,TN, Momence,IL, or Commerce,GA.

List this Seller's Books

Payment Methods
accepted by seller

Visa Mastercard American Express