Stock Image

Micromechanisms of Fracture and Fatigue In a Multi-scale Context Engineering Materials and Processes

Jaroslav Pokluda

0 ratings by Goodreads
ISBN 10: 1849962650 / ISBN 13: 9781849962650
Published by Springer
New Condition: New Hardcover
From BuySomeBooks (Las Vegas, NV, U.S.A.)

AbeBooks Seller Since May 21, 2012

Quantity Available: 20

Buy New
List Price: US$ 279.00
Price: US$ 431.29 Convert Currency
Shipping: US$ 3.95 Within U.S.A. Destination, Rates & Speeds
Add to basket

30 Day Return Policy

About this Item

Hardcover. 293 pages. Dimensions: 9.5in. x 6.4in. x 0.9in.Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittleductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications. This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Bookseller Inventory # 9781849962650

Ask Seller a Question

Bibliographic Details

Title: Micromechanisms of Fracture and Fatigue In a...

Publisher: Springer

Binding: Hardcover

Book Condition:New

Book Type: Hardcover

About this title

Synopsis:

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.

About the Author:

Jaroslav Pokluda received his PhD in the Physics of Condensed Matter from the University of J. E. Purkyne, Brno, Czech Republic. He was with the Military Research Institute of Materials and Technology until 1985 and, since then, he has been with the Brno University of Technology as Associate Professor, Professor and Head of the Department of Materials Micromechanics and Applied Acoustics. His research interests include modelling micromechanisms of fracture and fatigue (metals and ceramics); atomistic computations of mechanical properties of crystals; quantitative fractography (metals and ceramics); and uniaxial and biaxial fatigue of materials (metals). He is an author or co-author of 3 textbooks and 92 papers in scientific journals. He has edited 4 special issues of scientific journals (Engineering Fracture Mechanics, Strength of Materials, Materials Science Forum) and is on the editorial board of the journals Strength of Materials and Physicochemical Mechanics of Materials. Since 1999 he has been the Czech representative in the European Structural Integrity Society (ESIS). He was a co-chair of 7 international conferences MSMF1-6, and ECF17. He received commemorative medals awarded by the Institute of Materials Research at the Slovak Academy of Sciences, Slovakia (2005) and Brno University of Technology, Czech Republic (2008).

Pavel Šandera received his PhD in the Physics of Condensed Matter from the Brno University of Technology, Czech Republic. Since 1978 he has been with the Brno University of Technology as Associate Professor and Professor (2006). His research interests include modelling micromechanisms of fracture and fatigue (metals and ceramics); atomistic computations of mechanical properties of crystals; stochastic geometry; and fatigue of materials (metals). He has published 41 papers in scientific journals and edited specials issues of Materials Science Forum and Engineering Failure Analysis. He is on the editorial board of the Engineering Mechanics journal. He received the commemorative medal awarded by the Brno University of Technology, Czech Republic (2009).

"About this title" may belong to another edition of this title.

Store Description

BuySomeBooks is great place to get your books online. With over eight million titles available we're sure to have what you're looking for. Despite having a large selection of new books available for immediate shipment and excellent customer service, people still tell us they prefer us because of our prices.

Visit Seller's Storefront

Terms of Sale:

We guarantee the condition of every book as it's described on the Abebooks web
sites. If you're dissatisfied with your purchase (Incorrect Book/Not as
Described/Damaged) or if the order hasn't arrived, you're eligible for a refund
within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.

BuySomeBooks is operated by Drive-On-In, Inc., a Nevada co...

More Information
Shipping Terms:

Orders usually ship within 1-2 business days. Books are shipped from multiple locations so your order may arrive from Las Vegas,NV, Roseburg,OR, La Vergne,TN, Momence,IL, or Commerce,GA.

List this Seller's Books

Payment Methods
accepted by seller

Visa Mastercard American Express