Probabilistic Machine Learning for Civil Engineers
Goulet, James-a.
Sold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since April 6, 2009
Used - Soft cover
Condition: Used - As new
Quantity: 15 available
Add to basketSold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since April 6, 2009
Condition: Used - As new
Quantity: 15 available
Add to basketUnread book in perfect condition.
Seller Inventory # 38518444
This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws.
The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.
"About this title" may belong to another edition of this title.
Company Name: GreatBookPrices
Legal Entity: Expert Trading, LLC
Address: 9220 Rumsey Road, Ste 101, Columbia MD 21046
Email address: CustomerService@SuperBookDeals.com
Phone number: 410-964-0026
consumer complaints can be addressed to address above
Registration #: 52-1713923
Authorized representative: Danielle Hainsey
Internal processing of your order will take about 1-2 business days. Please allow an additional 4-14 business days for Media Mail delivery. We have multiple ship-from locations - MD,IL,NJ,UK,IN,NV,TN & GA
Order quantity | 8 to 14 business days | 5 to 14 business days |
---|---|---|
First item | US$ 2.64 | US$ 2.64 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.