Stock Image

Semantic Relations Between Nominals

Preslav Nakov

0 ratings by Goodreads
ISBN 10: 1608459799 / ISBN 13: 9781608459797
Published by Morgan & Claypool
New Condition: New Soft cover
From BuySomeBooks (Las Vegas, NV, U.S.A.)

AbeBooks Seller Since May 21, 2012

Quantity Available: 20
Buy New
List Price: US$ 40.00
Price: US$ 42.56 Convert Currency
Shipping: US$ 3.95 Within U.S.A. Destination, Rates & Speeds
Add to basket

30 Day Return Policy


About this Item

Paperback. 120 pages. Dimensions: 9.4in. x 7.6in. x 0.3in.People make sense of a text by identifying the semantic relations which connect the entities or concepts described by that text. A system which aspires to human-like performance must also be equipped to identify, and learn from, semantic relations in the texts it processes. Understanding even a simple sentence such as Opportunity and Curiosity find similar rocks on Mars requires recognizing relations (rocks are located on Mars, signalled by the word on) and drawing on already known relations (Opportunity and Curiosity are instances of the class of Mars rovers). A language-understanding system should be able to find such relations in documents and progressively build a knowledge base or even an ontology. Resources of this kind assist continuous learning and other advanced language-processing tasks such as text summarization, question answering and machine translation. The book discusses the recognition in text of semantic relations which capture interactions between base noun phrases. After a brief historical background, we introduce a range of relation inventories of varying granularity, which have been proposed by computational linguists. There is also variation in the scale at which systems operate, from snippets all the way to the whole Web, and in the techniques of recognizing relations in texts, from full supervision through weak or distant supervision to self-supervised or completely unsupervised methods. A discussion of supervised learning covers available datasets, feature sets which describe relation instances, and successful algorithms. An overview of weakly supervised and unsupervised learning zooms in on the acquisition of relations from large corpora with hardly any annotated data. We show how bootstrapping from seed examples or patterns scales up to very large text collections on the Web. We also present machine learning techniques in which data redundancy and variability lead to fast and reliable relation extraction. Table of Contents: Introduction Relations between Nominals, Relations between Concepts Extracting Semantic Relations with Supervision Extracting Semantic Relations with Little or No Supervision Conclusion This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Bookseller Inventory # 9781608459797

Ask Seller a Question

Bibliographic Details

Title: Semantic Relations Between Nominals

Publisher: Morgan & Claypool

Binding: Paperback

Book Condition:New

Book Type: Paperback

About this title

Synopsis:

People make sense of a text by identifying the semantic relations which connect the entities or concepts described by that text. A system which aspires to human-like performance must also be equipped to identify, and learn from, semantic relations in the texts it processes. Understanding even a simple sentence such as "Opportunity and Curiosity find similar rocks on Mars" requires recognizing relations (rocks are located on Mars, signalled by the word on) and drawing on already known relations (Opportunity and Curiosity are instances of the class of Mars rovers). A language-understanding system should be able to find such relations in documents and progressively build a knowledge base or even an ontology. Resources of this kind assist continuous learning and other advanced language-processing tasks such as text summarization, question answering and machine translation. The book discusses the recognition in text of semantic relations which capture interactions between base noun phrases. After a brief historical background, we introduce a range of relation inventories of varying granularity, which have been proposed by computational linguists. There is also variation in the scale at which systems operate, from snippets all the way to the whole Web, and in the techniques of recognizing relations in texts, from full supervision through weak or distant supervision to self-supervised or completely unsupervised methods. A discussion of supervised learning covers available datasets, feature sets which describe relation instances, and successful algorithms. An overview of weakly supervised and unsupervised learning zooms in on the acquisition of relations from large corpora with hardly any annotated data. We show how bootstrapping from seed examples or patterns scales up to very large text collections on the Web. We also present machine learning techniques in which data redundancy and variability lead to fast and reliable relation extraction. Table of Contents: Introduction / Relations between Nominals, Relations between Concepts / Extracting Semantic Relations with Supervision / Extracting Semantic Relations with Little or No Supervision / Conclusion

"About this title" may belong to another edition of this title.

Store Description

BuySomeBooks is great place to get your books online. With over eight million titles available we're sure to have what you're looking for. Despite having a large selection of new books available for immediate shipment and excellent customer service, people still tell us they prefer us because of our prices.

Visit Seller's Storefront

Terms of Sale:

We guarantee the condition of every book as it's described on the Abebooks web
sites. If you're dissatisfied with your purchase (Incorrect Book/Not as
Described/Damaged) or if the order hasn't arrived, you're eligible for a refund
within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.

BuySomeBooks is operated by Drive-On-In, Inc., a Nevada co...

More Information
Shipping Terms:

Orders usually ship within 1-2 business days. Books are shipped from multiple locations so your order may arrive from Las Vegas,NV, Roseburg,OR, La Vergne,TN, Momence,IL, or Commerce,GA.

List this Seller's Books

Payment Methods
accepted by seller

Visa Mastercard American Express