Understanding And Using Rough Set Based
Raza, Muhammad Summa
Sold by Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
AbeBooks Seller since February 27, 2001
New - Soft cover
Condition: New
Quantity: 15 available
Add to basketSold by Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
AbeBooks Seller since February 27, 2001
Condition: New
Quantity: 15 available
Add to basketThis book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.
The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book.
This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.
Dr. Muhammad Summair Raza holds a Ph.D. specialization in Software Engineering from the National University of Science and Technology (NUST), Pakistan. He completed his M.S. at the International Islamic University, Pakistan, in 2009. He is also associated with the Virtual University of Pakistan as an Assistant Professor. Having published various papers in international-level journals and conference proceedings, his research interests include Feature Selection, Rough Set Theory and Trend Analysis.
Dr. Usman Qamar has over 15 years of experience in data engineering in both academia and industry. He holds a Master’s in Computer Systems Design from the University of Manchester Institute of Science and Technology (UMIST), UK, as well as an M.Phil. and Ph.D. in Computer Science from the University of Manchester, UK. Dr Qamar’s research expertise is in Data and Text Mining, Expert Systems, Knowledge Discovery, and Feature Selection, areas in which he has published extensively. He is currently a Tenured Associate Professor at the Department of Computer & Software Engineering, National University of Sciences and Technology (NUST), Pakistan, where he also heads the Knowledge and Data Engineering Research Centre (KDRC).
"About this title" may belong to another edition of this title.
Terms of Sale - Credit Cards: Visa, Master Card, American Express, Diner.
Payment can also be made by bank draft in Euros, drawn on an Irish Bank.
We regret that PO Boxes are not acceptable to the U.S. as our courier will not deliver to them.
In case of returns or queries please contact us by email books@kennys.ie or by phone +353 91 709350
VAT Registration - IE2238521A
Conor Kenny
Free Shipping
| Order quantity | 12 to 22 business days | 10 to 20 business days |
|---|---|---|
| First item | US$ 12.21 | US$ 13.37 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.