Language: English
Published by Elsevier Science Ltd, 1989
ISBN 10: 0444880232 ISBN 13: 9780444880239
Seller: Book House in Dinkytown, IOBA, Minneapolis, MN, U.S.A.
Association Member: IOBA
Hardcover. Condition: Very Good. Elsevier Science Publishers, 1989. x, 481pp. Binding is tight, sturdy, and square; boards and text also very good. NOT an ex-library copy, NO remainder mark. Ships from Dinkytown in Minneapolis, Minnesota. Due to the size/weight of this book extra charges may apply for international shipping.
Language: English
Published by Society for Industrial and Applied Mathematics, Philadelphia, 1995
ISBN 10: 089871348X ISBN 13: 9780898713480
Seller: Winged Monkey Books, Arlington, VA, U.S.A.
Fifth Edition. Softcover, good with a very few oages with highlighting and marginal notes, light wear.
Language: English
Published by Manchester New York Brisbane , Halsted Press; Manchester University Press [1992]., 1992
ISBN 10: 0719033861 ISBN 13: 9780719033865
Seller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 65 SAA 9780719033865 Sprache: Englisch Gewicht in Gramm: 450.
Language: English
Published by Boston , PWS [1996]., 1996
ISBN 10: 053494776X ISBN 13: 9780534947767
Seller: Antiquariat Bookfarm, Löbnitz, Germany
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 65 SAA 9780534947767 Sprache: Englisch Gewicht in Gramm: 550.
Language: English
Published by Manchester, UK New York : Manchester University Press ; Halsted Press, 1992
ISBN 10: 0470218207 ISBN 13: 9780470218204
Seller: MW Books, New York, NY, U.S.A.
First Edition
First Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg.
Language: English
Published by Manchester, UK New York : Manchester University Press ; Halsted Press, 1992
ISBN 10: 0470218207 ISBN 13: 9780470218204
Seller: MW Books Ltd., Galway, Ireland
First Edition
First Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg.