Condition: New.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
US$ 68.35
Quantity: Over 20 available
Add to basketCondition: New. In English.
Seller: Chiron Media, Wallingford, United Kingdom
US$ 66.10
Quantity: 10 available
Add to basketPF. Condition: New.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP.
Language: English
Published by Springer International Publishing, 2011
ISBN 10: 3031007018 ISBN 13: 9783031007019
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces the so-called ''stable factorization approach'' to the synthesis of feedback controllers for linear control systems. The key to this approach is to view the multi-input, multi-output (MIMO) plant for which one wishes to design a controller as a matrix over the fraction field F associated with a commutative ring with identity, denoted by R, which also has no divisors of zero. In this setting, the set of single-input, single-output (SISO) stable control systems is precisely the ring R, while the set of stable MIMO control systems is the set of matrices whose elements all belong to R. The set of unstable, meaning not necessarily stable, control systems is then taken to be the field of fractions F associated with R in the SISO case, and the set of matrices with elements in F in the MIMO case. The central notion introduced in the book is that, in most situations of practical interest, every matrix P whose elements belong to F can be ''factored'' as a ''ratio'' of two matrices N,D whose elements belong to R, in such a way that N,D are coprime. In the familiar case where the ring R corresponds to the set of bounded-input, bounded-output (BIBO)-stable rational transfer functions, coprimeness is equivalent to two functions not having any common zeros in the closed right half-plane including infinity. However, the notion of coprimeness extends readily to discrete-time systems, distributed-parameter systems in both the continuous- as well as discrete-time domains, and to multi-dimensional systems. Thus the stable factorization approach enables one to capture all these situations within a common framework.The key result in the stable factorization approach is the parametrization of all controllers that stabilize a given plant. It is shown that the set of all stabilizing controllers can be parametrized by a single parameter R, whose elements all belong to R. Moreover, every transfer matrix in the closed-loop system is an affine function of the design parameter R. Thus problems of reliable stabilization, disturbance rejection, robust stabilization etc. can all be formulated in terms of choosing an appropriate R.This is a reprint of the book Control System Synthesis: A Factorization Approach originally published by M.I.T. Press in 1985.Table of Contents: Filtering and Sensitivity Minimization / Robustness / Extensions to General Settings.
Language: English
Published by Springer International Publishing, Springer International Publishing Jun 2011, 2011
ISBN 10: 3031007018 ISBN 13: 9783031007019
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This book introduces the so-called ''stable factorization approach'' to the synthesis of feedback controllers for linear control systems. The key to this approach is to view the multi-input, multi-output (MIMO) plant for which one wishes to design a controller as a matrix over the fraction field F associated with a commutative ring with identity, denoted by R, which also has no divisors of zero. In this setting, the set of single-input, single-output (SISO) stable control systems is precisely the ring R, while the set of stable MIMO control systems is the set of matrices whose elements all belong to R. The set of unstable, meaning not necessarily stable, control systems is then taken to be the field of fractions F associated with R in the SISO case, and the set of matrices with elements in F in the MIMO case. The central notion introduced in the book is that, in most situations of practical interest, every matrix P whose elements belong to F can be ''factored'' as a ''ratio'' of two matrices N,D whose elements belong to R, in such a way that N,D are coprime. In the familiar case where the ring R corresponds to the set of bounded-input, bounded-output (BIBO)-stable rational transfer functions, coprimeness is equivalent to two functions not having any common zeros in the closed right half-plane including infinity. However, the notion of coprimeness extends readily to discrete-time systems, distributed-parameter systems in both the continuous- as well as discrete-time domains, and to multi-dimensional systems. Thus the stable factorization approach enables one to capture all these situations within a common framework.The key result in the stable factorization approach is the parametrization of all controllers that stabilize a given plant. It is shown that the set of all stabilizing controllers can be parametrized by a single parameter R, whose elements all belong to R. Moreover, every transfer matrix in the closed-loop system is an affine function of the design parameter R. Thus problems of reliable stabilization, disturbance rejection, robust stabilization etc. can all be formulated in terms of choosing an appropriate R.This is a reprint of the book Control System Synthesis: A Factorization Approach originally published by M.I.T. Press in 1985.Table of Contents: Filtering and Sensitivity Minimization / Robustness / Extensions to General SettingsSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch.
Language: English
Published by Springer International Publishing Jun 2011, 2011
ISBN 10: 3031007018 ISBN 13: 9783031007019
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces the so-called ''stable factorization approach'' to the synthesis of feedback controllers for linear control systems. The key to this approach is to view the multi-input, multi-output (MIMO) plant for which one wishes to design a controller as a matrix over the fraction field F associated with a commutative ring with identity, denoted by R, which also has no divisors of zero. In this setting, the set of single-input, single-output (SISO) stable control systems is precisely the ring R, while the set of stable MIMO control systems is the set of matrices whose elements all belong to R. The set of unstable, meaning not necessarily stable, control systems is then taken to be the field of fractions F associated with R in the SISO case, and the set of matrices with elements in F in the MIMO case. The central notion introduced in the book is that, in most situations of practical interest, every matrix P whose elements belong to F can be ''factored'' as a ''ratio'' of two matrices N,D whose elements belong to R, in such a way that N,D are coprime. In the familiar case where the ring R corresponds to the set of bounded-input, bounded-output (BIBO)-stable rational transfer functions, coprimeness is equivalent to two functions not having any common zeros in the closed right half-plane including infinity. However, the notion of coprimeness extends readily to discrete-time systems, distributed-parameter systems in both the continuous- as well as discrete-time domains, and to multi-dimensional systems. Thus the stable factorization approach enables one to capture all these situations within a common framework.The key result in the stable factorization approach is the parametrization of all controllers that stabilize a given plant. It is shown that the set of all stabilizing controllers can be parametrized by a single parameter R, whose elements all belong to R. Moreover, every transfer matrix in the closed-loop system is an affine function of the design parameter R. Thus problems of reliable stabilization, disturbance rejection, robust stabilization etc. can all be formulated in terms of choosing an appropriate R.This is a reprint of the book Control System Synthesis: A Factorization Approach originally published by M.I.T. Press in 1985.Table of Contents: Filtering and Sensitivity Minimization / Robustness / Extensions to General Settings 228 pp. Englisch.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand.
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND.
Language: English
Published by Springer International Publishing, 2011
ISBN 10: 3031007018 ISBN 13: 9783031007019
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mathukumalli Vidyasagar was born in Guntur,India in 1947.He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Wisconsin in Madison, in 1965, 1967, and 1969, respectively. From the next twenty years he taught mostly .
Language: English
Published by Springer International Publishing, 2011
ISBN 10: 3031007018 ISBN 13: 9783031007019
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Control Systems Synthesis | A Factorization Approach, Part II | Mathukumalli Vidyasagar | Taschenbuch | xviii | Englisch | 2011 | Springer International Publishing | EAN 9783031007019 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.