Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.
The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.
"synopsis" may belong to another edition of this title.
Ian H. Witten is a professor of computer science at the University of Waikato in New Zealand. He directs the New Zealand Digital Library research project. His research interests include information retrieval, machine learning, text compression, and programming by demonstration. He received an MA in Mathematics from Cambridge University, England; an MSc in Computer Science from the University of Calgary, Canada; and a PhD in Electrical Engineering from Essex University, England. He is a fellow of the ACM and of the Royal Society of New Zealand. He has published widely on digital libraries, machine learning, text compression, hypertext, speech synthesis and signal processing, and computer typography.
Eibe Frank lives in New Zealand with his Samoan spouse and two lovely boys, but originally hails from Germany, where he received his first degree in computer science from the University of Karlsruhe. He moved to New Zealand to pursue his Ph.D. in machine learning under the supervision of Ian H. Witten and joined the Department of Computer Science at the University of Waikato as a lecturer on completion of his studies. He is now a professor at the same institution. As an early adopter of the Java programming language, he laid the groundwork for the Weka software described in this book. He has contributed a number of publications on machine learning and data mining to the literature and has refereed for many conferences and journals in these areas.
Mark A. Hall holds a bachelor’s degree in computing and mathematical sciences and a Ph.D. in computer science, both from the University of Waikato. Throughout his time at Waikato, as a student and lecturer in computer science and more recently as a software developer and data mining consultant for Pentaho, an open-source business intelligence software company, Mark has been a core contributor to the Weka software described in this book. He has published several articles on machine learning and data mining and has refereed for conferences and journals in these areas.
Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: Zoom Books Company, Lynden, WA, U.S.A.
Condition: very_good. Book is in very good condition and may include minimal underlining highlighting. The book can also include "From the library of" labels. May not contain miscellaneous items toys, dvds, etc. . We offer 100% money back guarantee and 24 7 customer service. Seller Inventory # ZBV.0123748569.VG
Quantity: 1 available
Seller: ZBK Books, Carlstadt, NJ, U.S.A.
Condition: good. Used book in good and clean conditions. Pages and cover are intact. Limited notes marks and highlighting may be present. May show signs of normal shelf wear and bends on edges. Item may be missing CDs or access codes. May include library marks. Fast Shipping. Seller Inventory # ZWM.OGJW
Quantity: 1 available
Seller: Austin Goodwill 1101, Austin, TX, U.S.A.
Condition: Acceptable. Get fast and secure shipping knowing your purchase helps empower our community to transform their lives through work. Seller Inventory # 4RZV6M000CR4
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
Paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_309150129
Quantity: 1 available
Seller: Once Upon A Time Books, Siloam Springs, AR, U.S.A.
paperback. Condition: Good. This is a used book in good condition and may show some signs of use or wear . This is a used book in good condition and may show some signs of use or wear . Seller Inventory # mon0001585908
Quantity: 1 available
Seller: Seattle Goodwill, Seattle, WA, U.S.A.
Condition: Good. May have some shelf-wear due to normal use. Your purchase funds free job training and education in the greater Seattle area. Thank you for supporting Goodwills nonprofit mission! Seller Inventory # 0KVOGF003OO7_ns
Quantity: 1 available
Seller: Seattle Goodwill, Seattle, WA, U.S.A.
Paperback. Condition: Acceptable. May have some shelf-wear due to normal use. Seller Inventory # 0KVOG2000V0Z
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
Paperback. Condition: Acceptable. Connecting readers with great books since 1972. Used textbooks may not include companion materials such as access codes, etc. May have condition issues including wear and notes/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_410840788
Quantity: 1 available
Seller: Seattle Goodwill, Seattle, WA, U.S.A.
Paperback. Condition: Acceptable. May have some shelf-wear due to normal use. Seller Inventory # 0KVOG20005N5
Quantity: 4 available
Seller: AwesomeBooks, Wallingford, United Kingdom
Paperback. Condition: Very Good. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Seller Inventory # 7719-9780123748560
Quantity: 1 available