Structural Monitoring with Fiber Optic Technology

0 avg rating
( 0 ratings by GoodReads )
 
9780124874305: Structural Monitoring with Fiber Optic Technology

This book is the first to address the field of structurally integrated fiber optic sensors. Fiber optic sensors embedded within materials and systems are able to measure a variety of parameters (i.e. temperature, vibration, deformation, strain, etc.) that allows for real time non-destructive evaluation. Examples include the following: monitoring structural fatigue in aging aircraft or loads in bridge structures. In more advanced applications, fiber optic sensors control actuators that allow materials to adapt to their environment. This gives rise to the names, "smart," "intelligent," and/or "adaptive" materials or structures.
Structural Monitoring with Fiber Optic Technology is the firs single author book on the new field of fiber optic structural sensing. As such it provides: coverage of the fundamentals of the technology, a coherent and systematic discussion on the most important aspects of the subject, a broad view of the subject, while retaining a degree of focus on those advances most significant in terms of their future potential, particularly in regard to broad implementation of the technology. The book provides an introduction to the relevant value to structural monitoring. It also highlights the advantages of fiber optic based sensors over conventional electrical measurement technology.
The book richly illustrates the subject matter with 615 figures and provides many examples of fiber optic structural sensing, including a detailed overview of a number of major field site applications. Most of these large scale applications are drawn from the civil engineering community as they have been the first to strongly embrace fiber optic structural monitoring. This is especially true for bridges, where innovative new designs and the use of fiber reinforced polymer composite materials to replace steel represents a major advance that is expected to revolutionize the construction industry. Examples include new bridges, which are serving as testbeds for these new materials and are instrumented with arrays of fiber optic structural sensors. In one case, this state-of-the-art monitoring system permits engineers at a distant site to track the response of the bridge to traffic loads and keep an eye on the long term performance of the new materials. Fiber optic structural sensing technology is equally applicable to other industrial sectors, such as the aerospace and marine industries. Indeed, several examples of ships being instrumented with arrays of fiber optic sensors are also included.


* The author directed one of the leading laboratories in the development of this technology and its application to civil engineering
* Provides a strong, concise foundation in the basics of the technology
* Includes many examples of the application of the technology, including many major field site case studies
* Richly illustrated with 615 figures, many redrawn to make them easier to understand; also includes over 600 references
* Written in a style designed to help the reader unfamiliar with fiber optic technology appreciate what can be accomplished with this new form of structural monitoring

"synopsis" may belong to another edition of this title.

From the Back Cover:

Fiber optic technology is destined to form the backbone of the 21st Century's Information Age. During the past 10 years it has also become apparent that fiber optic technology is very well suited to structural monitoring and is capable of tasks not practical or economically viable with conventional technology. Structural Monitoring with Fiber Optic Technologyprovides an introduction to the relevant background material needed to understand and appreciate the technology that underpins this new form of structural monitoring. The book richly illustrates the subject matter with 615 figures and provides many examples of fiber optic structural sensing, including a detailed overview of a number of major field site applications. A conscious effort has been made to focus on those aspects of the technology that show the greatest promise in terms of future development and broad implementation. Although the civil engineering community has been the first to really embrace fiber optic structural monitoring, as seen in the abundant examples of applications, the technology is equally applicable to other industrial sectors, such as the aerospace and marine industry.
A number of innovative bridges have been built recently to demonstrate that fiber reinforced polymer composite materials can be used to replace steel in many of its functions. This includes stay-cables, prestressing tendons and shear reinforcements. Fiber reinforced polymer rehabilitation and strengthening wraps and patches are equally showing great promise. In both instances the use of fiber optic structural sensing systems has been shown to be well suited for monitoring the sue of these new materials. The combination of these two new technologies represents a major advance that is expected to revolutionize the construction industry. In one example a state-of-the-art fiber optic monitoring system permits engineers at a distant monitoring site to closely observe the response of this innovative bridge to traffic loads and track the long term performance of its new materials. Fiber optic structural sensing technology is equally applicable to other industrial sectors, such as the aerospace and marine industries. Indeed, several examples of ships instrumented with arrays of fiber optic structural sensors are also included.

About the Author:

Dr. Raymond M. Measures was a Professor at the University of Toronto Institute for Aerospace Studies from 1964 to 1998, and served as the Associate Director from 1984 to 1991. In 1987, he was a member of the team that established the Ontario Laser and Lightwave Research Centre and in the early years, served on both its Board of Directors and its Management Committee. Dr. Measures played a key role in the creation of the Intelligent Sensing for Innovative Structures Network Centres of Excellence in 1995 and served as its Vice President for its firs two years. In the past decade, Dr. Measures has pioneered fiber optic structural sensing in Canada and established Fiber Optic Smart Structures Laboratory at the University of Toronto Institute for Aerospace Studies in 1988. The success of this project led to the formation of a new and vibrant company, ElectroPhotonics Corporation, which now produces state-of-the-art fiber optic telecommunication and structural sensing systems into innovative new bridges. Dr. Measures has authored or edited four books, contributed chapters to six books, an author or co-author on over 190 papers, and is a co-inventor on five patents.

"About this title" may belong to another edition of this title.

Buy New View Book
List Price: US$ 195.00
US$ 395.81

Convert Currency

Shipping: US$ 3.99
Within U.S.A.

Destination, Rates & Speeds

Add to Basket

Top Search Results from the AbeBooks Marketplace

1.

Measures, Raymond M.
Published by Academic Press (2001)
ISBN 10: 0124874304 ISBN 13: 9780124874305
New Hardcover Quantity Available: 1
Seller
Ergodebooks
(RICHMOND, TX, U.S.A.)
Rating
[?]

Book Description Academic Press, 2001. Hardcover. Book Condition: New. 1. Bookseller Inventory # DADAX0124874304

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 395.81
Convert Currency

Add to Basket

Shipping: US$ 3.99
Within U.S.A.
Destination, Rates & Speeds

2.

Measures, Raymond M.
Published by Academic Press (2001)
ISBN 10: 0124874304 ISBN 13: 9780124874305
New Hardcover Quantity Available: 1
Seller
Irish Booksellers
(Rumford, ME, U.S.A.)
Rating
[?]

Book Description Academic Press, 2001. Hardcover. Book Condition: New. book. Bookseller Inventory # 124874304

More Information About This Seller | Ask Bookseller a Question

Buy New
US$ 484.78
Convert Currency

Add to Basket

Shipping: FREE
Within U.S.A.
Destination, Rates & Speeds