Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter.
This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre.
"synopsis" may belong to another edition of this title.
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides both the theoretical foundations and guidance on practical implementation for the eigenvector spatial filtering (ESF) technique. ESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is its simplicity. With its flexible structure, ESF can be easily applied to generalized linear regression models as well as linear regression models. Spatial Regression Analysis Using Eigenvector Spatial Filtering discusses ESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, and spatial interaction models. It provides a tutorial for ESF model specification and interfaces with user-friendly software developed by the authors for implementing ESF.
Daniel A. Griffith is an Ashbel Smith Professor of Geospatial Information Sciences at the University of Texas at Dallas, affiliated professor in the College of Public Health at the University of South Florida, and adjunct professor in the Department of Resource Economics and Environmental Sociology at the University of Alberta. He holds degrees in Mathematics, Statistics, and Geography, and arguably is the inventor of Moran eigenvector spatial filtering. He is a two-time Fulbright Senior Specialist, an AAG Distinguished Research Honors awardee, and an elected fellow of the Royal Society of Canada, UCGIS, AAG, American Association for the Advancement of Science, American Statistical Association, Regional Science Association International, and Spatial Econometrics Association.
Yongwan Chun is an Associate Professor of Geospatial Information Sciences at the University of Texas at Dallas. His research interests lie in spatial statistics and GIS, focusing on urban issues, including population movement, environment, health, and crime. His research has been supported by the US National Science Foundation, and the US National Institutes of Health, among others. He has over 50 publications, including books, journal articles, book chapters, and conference proceedings.
Bin Li is a Professor of Geography at Central Michigan University. His academic interests are in GIS, cartography, spatial statistics, and economic geography. His research publications range from high performance processing geographic information services, to environmental modeling, geovisualization, and spatial statistics. He is a member of the editorial board of the Journal of Geospatial Information Science. He is active in international collaborations, serving as the co-director of the International Collaborative Center for Geocomputation Studies at Wuhan University, China.
"About this title" may belong to another edition of this title.
Shipping:
FREE
Within U.S.A.
Seller: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condition: New. 1. Brand new item, never opened! Ship within 24hrs. APO/FPO addresses supported. Seller Inventory # 0128150432-9-1
Quantity: 1 available
Seller: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condition: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.85. Seller Inventory # G0128150432I3N00
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 286. Seller Inventory # 380712317
Quantity: 3 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 286. Seller Inventory # 26382110370
Quantity: 3 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 432 pages. 8.90x5.90x0.70 inches. In Stock. This item is printed on demand. Seller Inventory # __0128150432
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 35623033-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. Englisch. Seller Inventory # 9780128150436
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 286. Seller Inventory # 18382110376
Quantity: 3 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. Seller Inventory # 9780128150436
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 35623033
Quantity: Over 20 available