EEG-Based Experiment Design for Major Depressive Disorder: Machine Learning and Psychiatric Diagnosis introduces EEG-based machine learning solutions for diagnosis and assessment of treatment efficacy for a variety of conditions. With a unique combination of background and practical perspectives for the use of automated EEG methods for mental illness, it details for readers how to design a successful experiment, providing experiment designs for both clinical and behavioral applications. This book details the EEG-based functional connectivity correlates for several conditions, including depression, anxiety, and epilepsy, along with pathophysiology of depression, underlying neural circuits and detailed options for diagnosis. It is a necessary read for those interested in developing EEG methods for addressing challenges for mental illness and researchers exploring automated methods for diagnosis and objective treatment assessment.
"synopsis" may belong to another edition of this title.
Dr. Malik has a B.S. in Electrical Engineering from University of Engineering and Technology, Lahore, Pakistan, M.S in Nuclear Engineering from Quaid-i-Azam University, Islamabad, Pakistan, another M.S in Information & Communication and Ph.D in Information & Mechatronics from Gwangju Institute of Science & Technology, Gwangju, Korea. He has more than 15 years of research experience and has worked for IBM, Hamdard University, Government of Pakistan, Yeungnam University and Hanyang University in Korea. He is currently working as Associate Professor at Universiti Teknologi PETRONAS in Malaysia. He is fellow of IET and senior member of IEEE. He is board member of Asia Pacific Neurofeedback Association (APNA) and member of Malaysia Society of Neuroscience (MSN). His research interests include neuro-signal & neuro-image processing and neuroscience big data analytics. He is author of 3 books and a number of international journal and conference papers with more than 1000 citations and cumulative impact factor of more than 180. He has a number of patents, copyrights and awards.
Dr. Wajid Mumtaz has completed his PhD degree from Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Malaysia in 2017. He continued as post doctorate researcher from 2017 to 2018 from the same institution. Recently, he has joined University of West Bohemia, located in Pilsen, Czech Republic as a Postdoctoral Research Fellow. In addition, he accomplished his masters in computer engineering and bachelor in electrical engineering from University of Engineering and Technology, Taxila, Pakistan in 2009 and 2005, respectively. His research interest includes biomedical signal processing and applications, machine learning application to medical problem solving, such as diagnosis and treatment assessment, adaptive noise cancellation for real-world data, such as Electroencephalogram (EEG).
"About this title" may belong to another edition of this title.
Shipping:
US$ 12.89
From United Kingdom to U.S.A.
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 300 pages. 9.00x6.00x0.87 inches. In Stock. Seller Inventory # 012817420X
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 300. Seller Inventory # 370173993
Quantity: 3 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 300. Seller Inventory # 26375904246
Quantity: 3 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -EEG-Based Experiment Design for Major Depressive Disorder: Machine Learning and Psychiatric Diagnosis introduces EEG-based machine learning solutions for diagnosis and assessment of treatment efficacy for a variety of conditions. With a unique combination of background and practical perspectives for the use of automated EEG methods for mental illness, it details for readers how to design a successful experiment, providing experiment designs for both clinical and behavioral applications. This book details the EEG-based functional connectivity correlates for several conditions, including depression, anxiety, and epilepsy, along with pathophysiology of depression, underlying neural circuits and detailed options for diagnosis. It is a necessary read for those interested in developing EEG methods for addressing challenges for mental illness and researchers exploring automated methods for diagnosis and objective treatment assessment. 254 pp. Englisch. Seller Inventory # 9780128174203
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 300. Seller Inventory # 18375904252
Quantity: 3 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - EEG-Based Experiment Design for Major Depressive Disorder: Machine Learning and Psychiatric Diagnosis introduces EEG-based machine learning solutions for diagnosis and assessment of treatment efficacy for a variety of conditions. With a unique combination of background and practical perspectives for the use of automated EEG methods for mental illness, it details for readers how to design a successful experiment, providing experiment designs for both clinical and behavioral applications. This book details the EEG-based functional connectivity correlates for several conditions, including depression, anxiety, and epilepsy, along with pathophysiology of depression, underlying neural circuits and detailed options for diagnosis. It is a necessary read for those interested in developing EEG methods for addressing challenges for mental illness and researchers exploring automated methods for diagnosis and objective treatment assessment. Seller Inventory # 9780128174203
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. EEG-Based Experiment Design for Major Depressive Disorder: Machine Learning and Psychiatric Diagnosis introduces EEG-based machine learning solutions for diagnosis and assessment of treatment efficacy for a variety of conditions. With a unique com. Seller Inventory # 282073713
Quantity: Over 20 available