As digital signal processing parts become more easily available (and cheaper), more and more engineers are being forced to use them when doing design work. Although several excellent books cover the theory and rigorous mathematics of DSP, few—if any—have focused on the practical aspects of doing design work in DSP. This volume provides not only a solid introduction to communications theory and digital signal processing, but also provides practical information on DSP as it applies to telecommunications. Discusses communications theory, mathematics, and notation; introduces the concepts, tools, and shortcomings of DSP; provides solved mathematical examples and computer program listings for implementing the algorithms; and devotes an entire section to applications of DSP in telecommunications—echo cancellation, transmultiplexers, voice-compression, and waveform generation. For design engineers in the field of communications, engineers in the fields of defense and bio-electronics, and engineering managers.
"synopsis" may belong to another edition of this title.
This book is intended to be of use to two broad groups of readers. The first group comprises those who have good familiarity with Digital Signal Processing (DSP) and/or Telecommunications. The second group consists of those who need at least a casual or, perhaps, detailed, knowledge of the applications of DSP in telecommunications. A typical member of the second group is someone who is involved in a design project utilizing DSP but whose area of expertise is a different branch of electrical engineering, such as software, hardware, systems engineering, or application-specific integrated circuit (ASIC) design. Included in the second group are students who wish to get a feel for how DSP is applied.
The book is comprised of nine chapters.
The intent of Chapter 1 is to provide the spectrum of readership a preamble that puts the material in the subsequent chapters in perspective.
Chapters 2 and 3 are targeted toward the second group and cover the fundamental concepts of communication theory and digital signal processing.
Readers in the first group could skip directly to Chapter 4 or skim Chapters 2 and 3 to get a feel for the notation used.
Chapters 4 through 9 are reasonably self contained and draw on material from the first three chapters. Those well versed in telecommunications would find the material useful in understanding the concepts of DSP; experts in DSP would find a description of some telecommunications concepts in a familiar jargon.
Except for Chapters 1 and 5, one section of each chapter consists of selected exercises. For Chapters 2 and 3 these exercises are chosen to enhance the understanding of the material in a mathematical sense. Applying pencil and paper remains the best way to develop a proficiency in dealing with the mathematical, and sometimes abstract, notions introduced. The exercises in the later chapters assume the availability of some form of computing power, either a PC or ad workstation, or some other form of desktop computing. These exercises are better described as suggestions for computer programs to simulate the structures and execute the algorithms described in the text.
Chapter 1 discusses some of the unique characteristics and thought processes associated with the telephone channel. In particular, the implications of the access portion of a telephone channel, the coding requirements for conversion between analog and digital formats, and the need for echo control in circuits that have substantial transmission delay. From the viewpoint of transmission, the subscriber's signal is affected first by the cable plant that is used to physically connect the station set to the network. This connection, called the subscriber loop, materially impacts the signal, especially when the subscriber is geographically distant from the central office, a distance that could be in excess of three miles. At the central office the signal experiences bandlimiting; the telephone network principally supports channels that have a (nominal) cutoff frequency of about 4 kHz.
Furthermore, the signal is converted from analog to digital format using a nonlinear encoding proces s. The subscriber loop is full duplex, or "two-wire," with the cable pair supporting signals in both directions. The Network is "four-wire," assigning separate (possibly logically separate) paths for signals in the two directions. This split is achieved by a hybrid and the non ideal nature of the hybrid gives rise to the phenomenon of echo. The focus of Chapter 1 is an explanation of the principal characteristics and impairments of the subscriber loop, signal processing in the "line circuit, " signal processing in the trunking network, and the need for echo control. Since telecommunications has its own jargon with several acronyms, which often times have lost their origin, an appendix is provided where several commonly used acronyms are expanded and a short description provided in some cases.
The fundamental concepts of communication theory and signal processing are presented in Chapter 2. In particular, the essentials of signal theory, transforms, and linear time-invariant systems are discussed. The principles of modulation, with emphasis on amplitude modulation, as well as the basic signal processing associated with data transmission, is treated in a unified, though simple, fashion.
Chapter 3 extends these concepts to discrete-time and digital signal processing. The cornerstone of DSP, the sampling theorem, is discussed in detail and the notions of Fourier transforms and frequency response of discrete-time filters are developed as extensions of the concepts introduced in the derivation of the sampling theorem.
Chapter 3 also covers the essentials of the Z-transform, and FIR and IIR filters. Finite-word length effects in A/D and D/A conversion, as well as in the implementation of digital filters, are treated in a generic fashion as additive noise. Analog-to-digital and digital-to-analog conversion are implied whenever we use digital techniques to process real-world, i.e., analog, information-bearing signals. In telecommunications the main information signal is speech or speech-like. For such signals the conversion process can be tailored to achieve a desired behaviour.
Chapter 4 discusses the principles of quantization, a fundamental component of an A/D converter. Quantization can be "uniform," as in traditional converters, or "compan ded," the term used to describe the nonuniform quantization charateristics used in A-law and m-law converters. Quantization also plays a part in the digital implementation of discrete- time filters.
The impact of "finite wordlength" of information bearing (analog) signals. The fundamentals of differential encoding, adaptive quantizers, Adaptive Differential Pulse Code Modulation (ADPCM), linear predictive coding (LPC) techniques, and Digital Speech Interpolation (DSI) are introduced. The ADPCM algorithm described follows the world-wide standard agreed upon and additional performance information, not commonly available in the open literature, is provided. The applicability of LPC for speech compression is presented via an example: the EIA-IS-54 standard for digital cellular telephony, which includes the description of the encoding of the speech signal. In the same vein, the application of DSI to speech compression is described via a discussion of the key facets of an available product, the TC421 from DSC Communications Corp.
Chapter 6 covers techniques for echo control in detail. The approach taken is to describe the manner in which echo control is accomplished by the use of echo suppressors and echo cancelers. The latter is the method of choice in all new deployment. Echo cancelers are basically adaptive digital filters and one section of Chapter 6 is devoted to the underlying theory of adaptive filters used in this application.
The Discrete Fourier Transform (DFT), first introduced in Chapter 3, is treated in greater detail in Chapter 7 along with its companion, the Discrete Cosine Transform (DCT). From the viewpoint of telecommunications, the principal usage of the DFT and the DCT is in applications calling for a collection of bandpass filters. Two such applications are described. The popularity of the DFT, in a general sense, stems from the availability of algorithms, generically referred to as Fast Fourier Transforms (FFTs), which drastically reduce the computational burden associated with a DFT. The study of FFT algorithms is quite mature and the bibliography provides numerous articles and books that the interested reader can refer to for details. Bandpass filtering is usually accompanied by a change in sampling rate, that is interpolation, whereby the rate is increased, or decimation, whereby the rate is decreases. Chapter 7 provides an introduction to interpolation and decimation and discusses the use of "polyphase schematics," which are block diagram representations of signal processing accompanied by sampling rate changes.
Chapter 8 explains the principles of Delta Sigma Modulation, especially as applied to analog-to-digital and digital-to-analog conversion. The principal contribution of Chapter 8 is an explanation of the manner in which conversion wordlength can be traded-off with sampling frequency. Such converters, even when used to convert speech signals, operate at a high sampling rate, of the order of 1 MHz, and hence providing digital filters that operate at this high rate can be an expensive proposition unless the filters are simple. The use of the rectangular and triangular windows, simple filters that can be implemented very cost-effectively, is covered in detail and a guideline as to the performance of Delta Sigma Modulation in conjuction with such filters is quantified.
Digital filters are completely described by their transfer functions, that is, the coefficients of the polynomials that define the poles and zeros of the digital filter. The notion of designing a digital filter is thus equivalent to obtaining eit
"About this title" may belong to another edition of this title.
Shipping:
FREE
Within U.S.A.
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00042496016
Quantity: 1 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00074931663
Quantity: 1 available
Seller: Better World Books, Mishawaka, IN, U.S.A.
Condition: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Seller Inventory # GRP83000667
Quantity: 1 available
Seller: Better World Books: West, Reno, NV, U.S.A.
Condition: Good. Used book that is in clean, average condition without any missing pages. Seller Inventory # 279140-6
Quantity: 1 available
Seller: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condition: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 2. Seller Inventory # G0130967513I3N00
Quantity: 1 available
Seller: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condition: Fair. No Jacket. Missing dust jacket; Readable copy. Pages may have considerable notes/highlighting. ~ ThriftBooks: Read More, Spend Less 2. Seller Inventory # G0130967513I5N01
Quantity: 1 available
Seller: Anybook.com, Lincoln, United Kingdom
Condition: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1150grams, ISBN:9780130967510. Seller Inventory # 9314280
Quantity: 1 available
Seller: The Media Foundation, BEAVERTON, OR, U.S.A.
Paperback. Condition: New. BRAND NEW. Pages are crisp and clean, binding tight. 100% Satisfaction Guaranteed. Orders received before 3PM PT typically ship same day. All profits support the non-profit community. Seller Inventory # mon0000013810
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 592 pages. 9.75x7.50x1.00 inches. In Stock. Seller Inventory # zk0130967513
Quantity: 1 available