Operator space theory provides a synthesis of Banach space theory with the non-commuting 'quantum' variables of operator algebra theory, and it has led to exciting new approaches in both disciplines. The authors begin by giving completely elementary proofs of the basic representation theorems for abstract operator spaces and their mappings. This is followed by a discussion of tensor products and the analogue of Grothendieck's approximation property. In the next section, the operator space analogues of the nuclear, integral and absolutely summing mappings are discussed. In what is perhaps the deepest part of the book, the authors present the remarkable 'non-classical' phenomena that occur when one considers local reflexivity and exactness for operator spaces. They have included the recent proof that, in contrast to C*-algebras themselves, C*-algebraic duals are always locally reflexive. In the final section of the book, the authors consider applications to non-commutative harmonic analysis and non-self-adjoint operator algebra theory.
"synopsis" may belong to another edition of this title.
Professor E G Effros Department of Mathematics University of California LOS ANGELES, CA 90024-1555 USA Professor Z-J Ruan Department of Mathematics University of Illinois Urbana, IL 61801 USA
"About this title" may belong to another edition of this title.
Seller: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condition: Fine. First edition, first printing, 384 pp., hardcover, fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Seller Inventory # ZB1325437