The three-volume work Perceiving in Depth is a sequel to Binocular Vision and Stereopsis and to Seeing in Depth, both by Ian P. Howard and Brian J. Rogers. This work is much broader in scope than the previous books and includes mechanisms of depth perception by all senses, including aural, electrosensory organs, and the somatosensory system. Volume 1 reviews sensory coding, psychophysical and analytic procedures, and basic visual mechanisms. Volume 2 reviews stereoscopic vision. Volume 3 reviews all mechanisms of depth perception other than stereoscopic vision. The three volumes are extensively illustrated and referenced and provide the most detailed review of all aspects of perceiving the three-dimensional world.
Volume 3 addresses all depth-perception mechanisms other than stereopsis. The book starts with an account of monocular cues to depth, including accommodation, vergence eye movements, perspective, interposition, shading, and motion parallax. A chapter on constancies in depth perception, such as the ability to perceive the sizes and shapes of objects as they move or rotate in depth, is followed by a chapter on the ways in which depth cues interact. The next chapter reviews sources of information, such as changing disparity, image looming, and vergence eye movements, used in the perception of objects moving in depth. Various pathologies of depth perception, including visual neglect, stereoanomalies, and albanism are reviewed. Visual depth-perception mechanisms through the animal kingdom are described, starting with insects and progressing through crustaceans, fish, amphibians, reptiles, birds, and mammals. The chapter includes a discussion of how stereoscopic vision may have evolved. The next chapter describes how visual depth perception is used to guide reaching movements of the hand, avoiding obstacles, and walking to a distant object. The next three chapters review non-visual mechanisms of depth perception. Auditory mechanisms include auditory localization, echolocation in bats and marine mammals, and the lateral-line system of fish. Some fish emit electric discharges and then use electric sense organs to detect distortions of the electric field produced by nearby objects. Some beetles and snakes use heat-sensitive sense organs to detect sources of heat. The volume ends with a discussion of mechanisms used by animals to navigate to a distant site. Ants find their way back to the nest by using landmarks and by integrating their walking movements. Several animals navigate by the stars or by polarized sunlight. It seems that animals in several phyla navigate by detecting the Earth's magnetic field.
"synopsis" may belong to another edition of this title.
Ian P. Howard is Professor emeritus in the Centre for Vision Research at York University in Toronto. He is the co-author of Human Spatial Orientation, Human Visual Orientation, and with Brian J. Rogers, of Binocular Vision and Stereopsis (Oxford University Press, 1995) and Seeing in Depth(Porteous and Oxford University Press, 2005).
"About this title" may belong to another edition of this title.
Shipping:
US$ 18.24
From United Kingdom to U.S.A.
Seller: Anybook.com, Lincoln, United Kingdom
Condition: Fair. Volume 3. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1550grams, ISBN:9780199764167. Seller Inventory # 9798732
Quantity: 1 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Hardcover. Condition: new. Hardcover. The three-volume work Perceiving in Depth is a sequel to Binocular Vision and Stereopsis and to Seeing in Depth, both by Ian P. Howard and Brian J. Rogers. This work is much broader in scope than the previous books and includes mechanisms of depth perception by all senses, including aural, electrosensory organs, and the somatosensory system. Volume 1 reviews sensory coding, psychophysical and analytic procedures, and basic visualmechanisms. Volume 2 reviews stereoscopic vision. Volume 3 reviews all mechanisms of depth perception other than stereoscopic vision. The three volumes are extensively illustrated and referenced and provide the most detailed review ofall aspects of perceiving the three-dimensional world.Volume 3 addresses all depth-perception mechanisms other than stereopsis. The book starts with an account of monocular cues to depth, including accommodation, vergence eye movements, perspective, interposition, shading, and motion parallax. A chapter on constancies in depth perception, such as the ability to perceive the sizes and shapes of objects as they move or rotate in depth, is followed by a chapter on the ways inwhich depth cues interact. The next chapter reviews sources of information, such as changing disparity, image looming, and vergence eye movements, used in the perception of objects moving in depth.Various pathologies of depth perception, including visual neglect, stereoanomalies, and albanism are reviewed. Visual depth-perception mechanisms through the animal kingdom are described, starting with insects and progressing through crustaceans, fish, amphibians, reptiles, birds, and mammals. The chapter includes a discussion of how stereoscopic vision may have evolved. The next chapter describes how visual depth perception is used to guide reaching movements of the hand, avoiding obstacles,and walking to a distant object. The next three chapters review non-visual mechanisms of depth perception. Auditory mechanisms include auditory localization, echolocation in bats and marine mammals,and the lateral-line system of fish. Some fish emit electric discharges and then use electric sense organs to detect distortions of the electric field produced by nearby objects. Some beetles and snakes use heat-sensitive sense organs to detect sources of heat. The volume ends with a discussion of mechanisms used by animals to navigate to a distant site. Ants find their way back to the nest by using landmarks and by integrating their walking movements. Several animals navigate by the stars orby polarized sunlight. It seems that animals in several phyla navigate by detecting the Earth's magnetic field. Volume 3 addresses depth-perception mechanisms other than stereopsis. It starts by reviewing monocular cues to depth, including accommodation, vergence, perspective, interposition, shading, and motion parallax. Constancies, such as the ability to perceive the sizes and shapes of objects as they move are reviewed. The ways in which different depth cues interact are discussed. One chapter reviews information used to perceive motion in depth. Pathologies of depth perception, including stereoanomalies and albanism are reviewed. Visual depth-perception mechanisms through the animal kingdom are reviewed together with a discussion of the evolution of stereoscopic vision. The next chapter describes how visual depth perception guides movements of the hand and body. The next three chapters review non-visual mechanisms of depth perception, including auditory localization, echolocation in bats and marine mammals, the lateral-line system of fish, electrolocation, and heat-sensitive sense organs. The volume ends with a discussion of mechanisms used by animals to navigate. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780199764167
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780199764167_new
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9780199764167
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 3rd edition. 408 pages. 11.10x8.70x1.10 inches. In Stock. Seller Inventory # x-0199764166
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Neuware - Volume 3 addresses depth-perception mechanisms other than stereopsis. It starts by reviewing monocular cues to depth, including accommodation, vergence, perspective, interposition, shading, and motion parallax. Constancies, such as the ability to perceive the sizes and shapes of objects as they move are reviewed. The ways in which different depth cues interact are discussed. One chapter reviews information used to perceive motion in depth. Pathologies of depth perception, including stereoanomalies and albanism are reviewed. Visual depth-perception mechanisms through the animal kingdom are reviewed together with a discussion of the evolution of stereoscopic vision. The next chapter describes how visual depth perception guides movements of the hand and body. The next three chapters review non-visual mechanisms of depth perception, including auditory localization, echolocation in bats and marine mammals, the lateral-line system of fish, electrolocation, and heat-sensitive sense organs. The volume ends with a discussion of mechanisms used by animals to navigate. Seller Inventory # 9780199764167
Quantity: 2 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. The three-volume work Perceiving in Depth is a sequel to Binocular Vision and Stereopsis and to Seeing in Depth, both by Ian P. Howard and Brian J. Rogers. This work is much broader in scope than the previous books and includes mechanisms of depth perception by all senses, including aural, electrosensory organs, and the somatosensory system. Volume 1 reviews sensory coding, psychophysical and analytic procedures, and basic visualmechanisms. Volume 2 reviews stereoscopic vision. Volume 3 reviews all mechanisms of depth perception other than stereoscopic vision. The three volumes are extensively illustrated and referenced and provide the most detailed review ofall aspects of perceiving the three-dimensional world.Volume 3 addresses all depth-perception mechanisms other than stereopsis. The book starts with an account of monocular cues to depth, including accommodation, vergence eye movements, perspective, interposition, shading, and motion parallax. A chapter on constancies in depth perception, such as the ability to perceive the sizes and shapes of objects as they move or rotate in depth, is followed by a chapter on the ways inwhich depth cues interact. The next chapter reviews sources of information, such as changing disparity, image looming, and vergence eye movements, used in the perception of objects moving in depth.Various pathologies of depth perception, including visual neglect, stereoanomalies, and albanism are reviewed. Visual depth-perception mechanisms through the animal kingdom are described, starting with insects and progressing through crustaceans, fish, amphibians, reptiles, birds, and mammals. The chapter includes a discussion of how stereoscopic vision may have evolved. The next chapter describes how visual depth perception is used to guide reaching movements of the hand, avoiding obstacles,and walking to a distant object. The next three chapters review non-visual mechanisms of depth perception. Auditory mechanisms include auditory localization, echolocation in bats and marine mammals,and the lateral-line system of fish. Some fish emit electric discharges and then use electric sense organs to detect distortions of the electric field produced by nearby objects. Some beetles and snakes use heat-sensitive sense organs to detect sources of heat. The volume ends with a discussion of mechanisms used by animals to navigate to a distant site. Ants find their way back to the nest by using landmarks and by integrating their walking movements. Several animals navigate by the stars orby polarized sunlight. It seems that animals in several phyla navigate by detecting the Earth's magnetic field. Volume 3 addresses depth-perception mechanisms other than stereopsis. It starts by reviewing monocular cues to depth, including accommodation, vergence, perspective, interposition, shading, and motion parallax. Constancies, such as the ability to perceive the sizes and shapes of objects as they move are reviewed. The ways in which different depth cues interact are discussed. One chapter reviews information used to perceive motion in depth. Pathologies of depth perception, including stereoanomalies and albanism are reviewed. Visual depth-perception mechanisms through the animal kingdom are reviewed together with a discussion of the evolution of stereoscopic vision. The next chapter describes how visual depth perception guides movements of the hand and body. The next three chapters review non-visual mechanisms of depth perception, including auditory localization, echolocation in bats and marine mammals, the lateral-line system of fish, electrolocation, and heat-sensitive sense organs. The volume ends with a discussion of mechanisms used by animals to navigate. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9780199764167
Quantity: 1 available