Grid Connected Converters: Modeling, Stability and Control discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids.
The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyberattacks.
"synopsis" may belong to another edition of this title.
Hassan Bevrani received PhD degree in electrical engineering from Osaka University (Japan) in 2004. He is a professor and the Program Leader of the Smart/Micro Grids Research Center (SMGRC) at the University of Kurdistan. Over the years, he has worked with Osaka University, Kyushu Institute of Technology, Nagoya University, Kumamoto University (Japan), Queensland University of Technology (Australia), Centrale Lille (France), and Technical University of Berlin (Germany). Currently, he is a visiting professor at the Doshisha University and an experienced research fellow of AvH Foundation (Germany). He is the author of 6 international books, 15 book chapters, and more than 300 journal/conference papers. He has been the guest editor of 5 volumes of Elsevier Energy Procedia and Energy Reports journals. His current research interests include stability analysis and control of renewable integrated power grids, smart grids, microgrids, flexible controlled power converters, and Intelligent/robust control applications in the power electric industry.
Toshiji Kato was born in Kyoto, Japan. He received the B.E., M.E., and Ph.D. degrees from Doshisha University, Kyoto, in 1979, 1981, and 1986, respectively. Since 1981, he has been with Doshisha University, where he is currently a professor with the Department of Electrical Engineering. He was a visiting scientist with the Institut de Recherché d’Hydro-Québec (IREQ), Varennes, QC, Canada, in 1990, and the Laboratory for Electromagnetic and Electronic Systems (LEES), Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, from 1990 to 1992. His current research interests include grid-connected converters, computer analysis, and control of power and power electronic systems. Professor Kato is a fellow of IEE of Japan, and a senior member of IEEE.
Toshifumi Ise received the B.Eng., M. Eng., and D. Eng. degrees in electrical engineering from Osaka University, Osaka, Japan, in 1980, 1982, and 1986, respectively. From 1986 to 1990, he was with the Nara National College of Technology, Nara, Japan. Since 1990, he had been with the Faculty of Engineering and the Graduate School of Engineering, Osaka University. He was a Professor, from August 2002 to March 2018. He is currently a Professor Emeritus with Osaka University and the President of the Nara-Gakuen Incorporated Educational Institution. His research interests are in the areas of power electronics and applied superconductivity for power systems. He is a Fellow of the Institute of Electrical Engineers of Japan (IEEJ).
Kaoru Inoue was born in Osaka, Japan. He received the B.E. and M.E. degrees from Kansai University, Suita, Japan, in 1996 and 1998, respectively, and the Ph.D. degree from Osaka University, Suita, in 2001. He was a research fellow with the Japan Society for the Promotion of Science, Tokyo, Japan, from 2000 to 2001. Since 2001, he has been with the Department of Electrical Engineering, Doshisha University, Kyoto, Japan, where he is currently a professor. He was a visiting scholar with the Department of Electrical Engineering and Computer Science (EECS), University of California, Berkeley, CA, USA, from 2007 to 2008. His current research interests include analysis and control of power electronics and motor drive systems. Professor Inoue is a member of IEEE, IEICE, and IEE of Japan.
Advanced control methodologies for grid-connected converters (GCC) bring the potential to offset the intrinsic intermittency of distributed energy resources and provide control support to the host utility during abnormal conditions. Grid Connected Converters discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once the foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids. The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyber-attacks.
"About this title" may belong to another edition of this title.
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # VXSVUQYRKU
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 390185500
Quantity: 3 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st edition NO-PA16APR2015-KAP. Seller Inventory # 26389447107
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 256 pages. 9.00x6.00x0.83 inches. In Stock. This item is printed on demand. Seller Inventory # __0323999026
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 44423250-n
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Grid Connected Converters: Modeling, Stability and Control discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids.The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyberattacks. 310 pp. Englisch. Seller Inventory # 9780323999021
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18389447113
Quantity: 3 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. Seller Inventory # B9780323999021
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780323999021_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 44423250-n
Quantity: Over 20 available