This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus.

The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering.

Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on.

In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models.

The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models.

What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics.

This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book.

This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory.

Key features:

- It is mainly application oriented.

- It contains a complete theory of Fractional Differential Equations.

- It can be used as a postgraduate-level textbook in many different disciplines within science and engineering.

- It contains an up-to-date bibliography.

- It provides problems and directions for further investigations.

- Fractional Modelling is an emergent tool with demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering.

- It contains many examples.

- and so on!

*"synopsis" may belong to another edition of this title.*

"This book presents a nice and systematic treatment of the theory and applications of fractional differential equations." -ZENTRALBLATT MATH DATABASE 1931-2007 "This book is a valuable resource for any worker in electronic structure theory, both for its insight into the utility of a variety of relativistic methods, and for its assessment of the contribution of relativity to a wide range of experimental properties," -THEOR CHEM ACC (2007)

"For obvious reasons, the book is rather technical, but its main goal is the ultimate applications. These are explicitly or implicitly present during the whole text but they are only treated in their mathematical formulation. I.e., the electrotechnical, biological, optical, or whatever exotic context it could have been embedded in is avoided here. The book is thus certainly interesting for the (applied) mathematician, but, also for researchers who are working in one of the quite diverse applied areas where fractional models are more and more used these days."--Bulletin of the Belgian Mathematical Society

*"About this title" may belong to another edition of this title.*

US$ 167.45

**Shipping:**
FREE

From United Kingdom to U.S.A.

Published by
ELSEVIER SCIENCE TECHNOLOGY, United Kingdom
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: 10

Seller:

Rating

**Book Description **ELSEVIER SCIENCE TECHNOLOGY, United Kingdom, 2006. Hardback. Book Condition: New. 204th edition. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on. In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models. The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models. What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics. This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book. This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory. Key features: - It is mainly application oriented.- It contains a complete theory of Fractional Differential Equations.- It can be used as a postgraduate-level textbook in many different disciplines within science and engineering.- It contains an up-to-date bibliography.- It provides problems and directions for further investigations.- Fractional Modelling is an. Bookseller Inventory # EOD9780444518323

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier
(2016)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Paperback
Quantity Available: 1

Seller:

Rating

**Book Description **Elsevier, 2016. Paperback. Book Condition: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Bookseller Inventory # ria9780444518323_lsuk

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science and Technology
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Quantity Available: > 20

Seller:

Rating

**Book Description **Elsevier Science and Technology, 2006. HRD. Book Condition: New. New Book.Shipped from US within 10 to 14 business days.THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bookseller Inventory # IP-9780444518323

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science and Technology
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Quantity Available: > 20

Seller:

Rating

**Book Description **Elsevier Science and Technology, 2006. HRD. Book Condition: New. New Book. Delivered from our US warehouse in 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND.Established seller since 2000. Bookseller Inventory # IP-9780444518323

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Elsevier Science, 2006. Hardback. Book Condition: NEW. 9780444518323 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. For all enquiries, please contact Herb Tandree Philosophy Books directly - customer service is our primary goal. Bookseller Inventory # HTANDREE01202151

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science
(2017)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: 2

Seller:

Rating

**Book Description **Elsevier Science, 2017. Hardcover. Book Condition: New. Never used! This item is printed on demand. Bookseller Inventory # P110444518320

More Information About This Seller | Ask Bookseller a Question

Published by
ELSEVIER SCIENCE TECHNOLOGY, United Kingdom
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: 10

Seller:

Rating

**Book Description **ELSEVIER SCIENCE TECHNOLOGY, United Kingdom, 2006. Hardback. Book Condition: New. 204th edition. Language: English . Brand New Book ***** Print on Demand *****. This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on. In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models. The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models. What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics. This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book. This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory. Key features: - It is mainly application oriented.- It contains a complete theory of Fractional Differential Equations.- It can be used as a postgraduate-level textbook in many different disciplines within science and engineering.- It contains an up-to-date bibliography.- It provides problems and directions for further investigations.- Fractional Modelling is an emergent tool with demonstrated applications in numerous seemingly diverse and widespread fields. Bookseller Inventory # APC9780444518323

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science
(2017)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: > 20

Seller:

Rating

**Book Description **Elsevier Science, 2017. Hardcover. Book Condition: New. Never used! This item is printed on demand. Bookseller Inventory # 0444518320

More Information About This Seller | Ask Bookseller a Question

Published by
Elsevier Science
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Elsevier Science, 2006. Hardback. Book Condition: NEW. 9780444518323 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. For all enquiries, please contact Herb Tandree Philosophy Books directly - customer service is our primary goal. Bookseller Inventory # HTANDREE0896793

More Information About This Seller | Ask Bookseller a Question

Published by
ELSEVIER SCIENCE TECHNOLOGY, United Kingdom
(2006)

ISBN 10: 0444518320
ISBN 13: 9780444518323

New
Hardcover
Quantity Available: 10

Seller:

Rating

**Book Description **ELSEVIER SCIENCE TECHNOLOGY, United Kingdom, 2006. Hardback. Book Condition: New. 204th edition. Language: English . Brand New Book ***** Print on Demand *****.This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on. In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models. The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models. What are the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics. This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book. This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory. Key features: - It is mainly application oriented.- It contains a complete theory of Fractional Differential Equations.- It can be used as a postgraduate-level textbook in many different disciplines within science and engineering.- It contains an up-to-date bibliography.- It provides problems and directions for further investigations.- Fractional Modelling is an emergent tool with demonstrated applications in numerous seemingly diverse and widespread fields. Bookseller Inventory # APC9780444518323

More Information About This Seller | Ask Bookseller a Question