Clifford Theory for Group Representations (North-Holland Mathematical Library)

0 avg rating
( 0 ratings by Goodreads )
9780444873774: Clifford Theory for Group Representations (North-Holland Mathematical Library)

Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields.

"synopsis" may belong to another edition of this title.

(No Available Copies)

Search Books:

Create a Want

If you know the book but cannot find it on AbeBooks, we can automatically search for it on your behalf as new inventory is added. If it is added to AbeBooks by one of our member booksellers, we will notify you!

Create a Want