The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components.
By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate.
This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter.
Additional Information:
Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB, to accompany the textbook. You can also contact the author and find help for instructors.
"synopsis" may belong to another edition of this title.
Dr. Chris A. Mack developed the lithography simulation software PROLITH, and founded and ran the company FINLE Technologies fro ten years. He then served as Vice President of Lithography Technology for KLA-Tencor for five years, until 2005. In 2003 he received the SEMI Award for North America for his efforts in lithography simulation and education. He is also an adjunct faculty member at the University of Texas at Austin. Currently, he writes, teaches, and consults on the field of semiconductor microlithography in Austin, Texas.
Microlithography is the main technical driving force behind one of the most important phenomenon in the history of technology - microelectronics and the incredible shrinking transistor. These dramatic increases in electronic functionality per unit cost each year for early five decades, have transformed society. The gating piece of technology in this marvel of manufacturing progress has always been the process of lithography - the photochemical printing of circuit patterns onto semiconductor wafers.
This text attempts a difficult task - to capture the fundamental principles of the incredibly fast-changing field of semiconductor microlithography in such a sway that these principles may be effectively applied to past, present and future microfabrication technology generations. Its focus is on the underlying scientific principles of optical lithography, rather than its practice. It will serve equally well as a university textbook (each chapter has an extensive set of problems) and as an industry resource.
Much of the material contained in this book is, of course, a tutorial review of the published literature on lithography and related sciences, but a significant portion is new work, never before having been published. there is no other single book that covers the wide breadth of scientific disciplines needed in the practice of optical microlithography. The major topics covered within this text are optics (imaging and thin film interference effects), photoresist chemistry (chemical reactions, diffusion, and development phenomenon), lithography as a manufacturing process (process control, critical dimension control, and overlay), and resolution enhancement technologies.
Microlithography is the main technical driving force behind one of the most important phenomenon in the history of technology - microelectronics and the incredible shrinking transistor. These dramatic increases in electronic functionality per unit cost each year for early five decades, have transformed society. The gating piece of technology in this marvel of manufacturing progress has always been the process of lithography - the photochemical printing of circuit patterns onto semiconductor wafers.
This text attempts a difficult task - to capture the fundamental principles of the incredibly fast-changing field of semiconductor microlithography in such a sway that these principles may be effectively applied to past, present and future microfabrication technology generations. Its focus is on the underlying scientific principles of optical lithography, rather than its practice. It will serve equally well as a university textbook (each chapter has an extensive set of problems) and as an industry resource.
Much of the material contained in this book is, of course, a tutorial review of the published literature on lithography and related sciences, but a significant portion is new work, never before having been published. there is no other single book that covers the wide breadth of scientific disciplines needed in the practice of optical microlithography. The major topics covered within this text are optics (imaging and thin film interference effects), photoresist chemistry (chemical reactions, diffusion, and development phenomenon), lithography as a manufacturing process (process control, critical dimension control, and overlay), and resolution enhancement technologies.
"About this title" may belong to another edition of this title.
US$ 4.50 shipping within U.S.A.
Destination, rates & speedsSeller: Feldman's Books, Menlo Park, CA, U.S.A.
Hardcover. Condition: Fine. First Edition. No markings. Seller Inventory # 00044505
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 3460955-n
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB, to accompany the textbook. You can also contact the author and find help for instructors. Fundamental Principles of Optical Lithography: The Science of Microfabrication presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. This sole-authored text includes optional computer simulation exercises as well as problems at the end of each chapter. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780470018934
Quantity: 1 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9780470018934
Quantity: 15 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 3460955
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 3460955-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 3460955
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780470018934_new
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB, to accompany the textbook. You can also contact the author and find help for instructors. Fundamental Principles of Optical Lithography: The Science of Microfabrication presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. This sole-authored text includes optional computer simulation exercises as well as problems at the end of each chapter. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780470018934
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films. Seller Inventory # 556553358
Quantity: Over 20 available