Items related to Numerical Methods for Large Eigenvalue Problems (Algorithms...

Numerical Methods for Large Eigenvalue Problems (Algorithms and Architectures for Advanced Scientific Computing) - Hardcover

 
Image Not Available

Synopsis

Offers a timely, in-depth perspective of numerical techniques used in solving large matrix eigenvalue problems arising in diverse engineering and scientific applications. Although important material for symmetric problems is covered, the focus is placed on more difficult nonsymmetric issues. Features solid theoretical treatment-- all of the latest plus well-known methods--and lists of some key computer programs.

"synopsis" may belong to another edition of this title.

Book Description

This revised edition discusses numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices. For researchers in applied mathematics and scientific computing, and can also be used as a supplementary text for an advanced graduate course on these methods.

About the Author

Yousef Saad is a College of Science and Engineering distinguished professor in the Department of Computer Science at the University of Minnesota. His current research interests include numerical linear algebra, sparse matrix computations, iterative methods, parallel computing, numerical methods for electronic structure, and data analysis. He is a Fellow of SIAM and the AAAS.

"About this title" may belong to another edition of this title.

  • PublisherWiley
  • Publication date1992
  • ISBN 10 0470218207
  • ISBN 13 9780470218204
  • BindingHardcover
  • LanguageEnglish
  • Edition number1
  • Number of pages346

Buy Used

Near-fine copy in the original... View this item

Shipping: FREE
Within U.S.A.

Destination, rates & speeds

Add to basket

Other Popular Editions of the Same Title

Search results for Numerical Methods for Large Eigenvalue Problems (Algorithms...

Seller Image

Saad, Youcef
ISBN 10: 0470218207 ISBN 13: 9780470218204
Used Hardcover First Edition

Seller: MW Books, New York, NY, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

First Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg. Seller Inventory # 385855

Contact seller

Buy Used

US$ 139.40
Convert currency
Shipping: FREE
Within U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Saad, Youcef
ISBN 10: 0470218207 ISBN 13: 9780470218204
Used Hardcover First Edition

Seller: MW Books Ltd., Galway, Ireland

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

First Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg. Seller Inventory # 385855

Contact seller

Buy Used

US$ 140.53
Convert currency
Shipping: US$ 15.23
From Ireland to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket