AN INTRODUCTION TO Wavelet Modulated Inverters
An authoritative guide to designing and constructing wavelet functions that accurately model complex circuits for better performance
This is the first book to provide details, analysis, development, implementation, and performances of wavelet modulated (WM) inverters, a novel technique that keeps power systems stable and minimizes energy waste while enhancing power quality and efficiency. Written by experts in the power electronics field, it provides step-by-step procedures to implement the WM technique for single- and three-phase inverters. Also presented are key sample performance results for the new WM power inverters for different load types, which demonstrate the inverters’ simplicity, efficacy, and robustness.
Beginning with the fundamentals of inverter technology, the book then describes wavelet basis functions and sampling theory with particular reference to the switching model of inverters. From there, comprehensive chapters explain:
The book establishes, for the first time, a direct utilization of different concepts of the sampling theorem and signal processing in accurate modeling of the operation of single- and three-phase inverters. Figures are provided to help develop the basis of utilizing concepts of the sampling, signal processing, and wavelet theories in developing a new tool and technology for inverters. Also included are easy-to-follow mathematical derivations, as well as procedures and flowcharts to facilitate the implementation of the WM inverters. These items make this unique reference of great interest to academic researchers, industry-based researchers, and practicing engineers. It is ideally suited for senior undergraduate and graduate-level students in electrical engineering, computer engineering, applied signal processing, and power electronics courses.
"synopsis" may belong to another edition of this title.
S. A. SALEH, PHD, IEEE Member, is a faculty member at the School of Ocean Technology, Marine Institute, Memorial University of Newfoundland, Canada. He has published more than ten IEEE Transactions and holds two patents. Dr. Saleh’s research interests include wavelets, wavelet transforms, power system protection and control, power electronic converters, modulation techniques, digital signal processing and its applications in power systems, and power electronics.
M. AZIZUR RAHMAN, PHD, IEEE Life Fellow, is Professor and University Research Professor at Memorial University of Newfoundland, Canada. He has forty-eight years of teaching experience. Rahman has published more than 650 papers and holds eleven patents. He is the recipient of numerous awards.
An authoritative guide to designing and constructing wavelet functions that accurately model complex circuits for better performance
This is the first book to provide details, analysis, development, implementation, and performances of wavelet modulated (WM) inverters, a novel technique that keeps power systems stable and minimizes energy waste while enhancing power quality and efficiency. Written by experts in the power electronics field, it provides step-by-step procedures to implement the WM technique for single- and three-phase inverters. Also presented are key sample performance results for the new WM power inverters for different load types, which demonstrate the inverters’ simplicity, efficacy, and robustness.
Beginning with the fundamentals of inverter technology, the book then describes wavelet basis functions and sampling theory with particular reference to the switching model of inverters. From there, comprehensive chapters explain:
The book establishes, for the first time, a direct utilization of different concepts of the sampling theorem and signal processing in accurate modeling of the operation of single- and three-phase inverters. Figures are provided to help develop the basis of utilizing concepts of the sampling, signal processing, and wavelet theories in developing a new tool and technology for inverters. Also included are easy-to-follow mathematical derivations, as well as procedures and flowcharts to facilitate the implementation of the WM inverters. These items make this unique reference of great interest to academic researchers, industry-based researchers, and practicing engineers. It is ideally suited for senior undergraduate and graduate-level students in electrical engineering, computer engineering, applied signal processing, and power electronics courses.
An authoritative guide to designing and constructing wavelet functions that accurately model complex circuits for better performance
This is the first book to provide details, analysis, development, implementation, and performances of wavelet modulated (WM) inverters, a novel technique that keeps power systems stable and minimizes energy waste while enhancing power quality and efficiency. Written by experts in the power electronics field, it provides step-by-step procedures to implement the WM technique for single- and three-phase inverters. Also presented are key sample performance results for the new WM power inverters for different load types, which demonstrate the inverters' simplicity, efficacy, and robustness.
Beginning with the fundamentals of inverter technology, the book then describes wavelet basis functions and sampling theory with particular reference to the switching model of inverters. From there, comprehensive chapters explain:
The connection between the non-uniform sampling theorem and wavelet functions to develop an ideal sampling-reconstruction process to operate an inverter
The development of scale-based linearly combined basis functions in order to successfully operate single-phase WM inverters
Performances of single-phase WM inverters for static, dynamic, and non-linear loads
The simulation and experimental performances of three-phase wavelet modulated voltage source inverters for different loads at various operating conditions
The book establishes, for the first time, a direct utilization of different concepts of the sampling theorem and signal processing in accurate modeling of the operation of single- and three-phase inverters. Figures are provided to help develop the basis of utilizing concepts of the sampling, signal processing, and wavelet theories in developing a new tool and technology for inverters. Also included are easy-to-follow mathematical derivations, as well as procedures and flowcharts to facilitate the implementation of the WM inverters. These items make this unique reference of great interest to academic researchers, industry-based researchers, and practicing engineers. It is ideally suited for senior undergraduate and graduate-level students in electrical engineering, computer engineering, applied signal processing, and power electronics courses.
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 7592139-n
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEOCT25-92560
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9780470610480
Quantity: 15 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 148 Index. Seller Inventory # 26781898
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 148. Seller Inventory # 8147349
Quantity: 1 available
Seller: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Seller Inventory # SHAK92560
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. AN INTRODUCTION TO Wavelet Modulated Inverters An authoritative guide to designing and constructing wavelet functions that accurately model complex circuits for better performance This is the first book to provide details, analysis, development, implementation, and performances of wavelet modulated (WM) inverters, a novel technique that keeps power systems stable and minimizes energy waste while enhancing power quality and efficiency. Written by experts in the power electronics field, it provides step-by-step procedures to implement the WM technique for single- and three-phase inverters. Also presented are key sample performance results for the new WM power inverters for different load types, which demonstrate the inverters simplicity, efficacy, and robustness. Beginning with the fundamentals of inverter technology, the book then describes wavelet basis functions and sampling theory with particular reference to the switching model of inverters. From there, comprehensive chapters explain: The connection between the non-uniform sampling theorem and wavelet functions to develop an ideal sampling-reconstruction process to operate an inverterThe development of scale-based linearly combined basis functions in order to successfully operate single-phase WM invertersPerformances of single-phase WM inverters for static, dynamic, and non-linear loadsThe simulation and experimental performances of three-phase wavelet modulated voltage source inverters for different loads at various operating conditions The book establishes, for the first time, a direct utilization of different concepts of the sampling theorem and signal processing in accurate modeling of the operation of single- and three-phase inverters. Figures are provided to help develop the basis of utilizing concepts of the sampling, signal processing, and wavelet theories in developing a new tool and technology for inverters. Also included are easy-to-follow mathematical derivations, as well as procedures and flowcharts to facilitate the implementation of the WM inverters. These items make this unique reference of great interest to academic researchers, industry-based researchers, and practicing engineers. It is ideally suited for senior undergraduate and graduate-level students in electrical engineering, computer engineering, applied signal processing, and power electronics courses. The introductory chapter briefly presents the fundamental topologies and operation of power inverters. The second chapter contains a description of wavelet basis functions and sampling theory with particular reference to the switching model of inverters. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780470610480
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 7592139-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780470610480_new
Quantity: Over 20 available
Seller: Ubiquity Trade, Miami, FL, U.S.A.
Condition: New. Brand new! Please provide a physical shipping address. Seller Inventory # 9780470610480