Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. The analysis of biological neural systems, especially for visual processing, has allowed engineers to better understand how complex networks can effectively process large amounts of information, whilst dealing with difficult computational challenges.
Analog and parallel processing are key characteristics of biological neural networks. Analog VLSI circuits using the same features can therefore be developed to emulate brain-style processing. Using standard CMOS technology, they can be cheaply manufactured, permitting efficient industrial and consumer applications in robotics and mobile electronics.
This book explores the theory, design and implementation of analog VLSI circuits, inspired by visual motion processing in biological neural networks. Using a novel approach pioneered by the author himself, Stocker explains in detail the construction of a series of electronic chips, providing the reader with a valuable practical insight into the technology.
Analog VLSI Circuits for the Perception of Visual Motion:
With a complete review of all existing neuromorphic analog VLSI systems for visual motion sensing, Analog VLSI Circuits for the Perception of Visual Motion is a unique reference for advanced students in electrical engineering, artificial intelligence, robotics and computational neuroscience. It will also be useful for researchers, professionals, and electronics engineers working in the field.
"synopsis" may belong to another edition of this title.
Alan A. Stocker is the author of Analog VLSI Circuits for the Perception of Visual Motion, published by Wiley.
Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. The analysis of biological neutral systems, especially for visual processing, has allowed angineers to better understand how complex network can effictively process large amounts of information, whilst dealing with difficult computational challenges.
Analog and parallel processing are key characteristics of biological neutral networks. Analog VLSI circuits using the same features can therefore be developed to emulate brain-style processing. Using standard CMOS technology, they can be cheaply manufactured, permitting efficient industrial and consumer applications in robotics and mobile electronics.
This book explores the theory, design and implementation of analog VLSI circuits, inspired by visual motion processing in biological neutral networks. Using a novel approach pioneered by the author himself, Stocker explains in detail the construction of a series of electronic chips, providing the reader with a valuable practical insight into the technology.
Analog VLSI Circuits for the Perception of Visual Motion:
With a complete review of all existing neuromorphic analog VLSI systems for visual motion sensing, Analog VLSI Circuits for the Perception of Visual Motion is a unique reference for advanced students in electrical engineering, artificial intelligence, robotics and computational neuroscience. It will also be useful for researcher, professionals, and electronics engineers working in the field.
Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. The analysis of biological neutral systems, especially for visual processing, has allowed angineers to better understand how complex network can effictively process large amounts of information, whilst dealing with difficult computational challenges.
Analog and parallel processing are key characteristics of biological neutral networks. Analog VLSI circuits using the same features can therefore be developed to emulate brain-style processing. Using standard CMOS technology, they can be cheaply manufactured, permitting efficient industrial and consumer applications in robotics and mobile electronics.
This book explores the theory, design and implementation of analog VLSI circuits, inspired by visual motion processing in biological neutral networks. Using a novel approach pioneered by the author himself, Stocker explains in detail the construction of a series of electronic chips, providing the reader with a valuable practical insight into the technology.
Analog VLSI Circuits for the Perception of Visual Motion:
With a complete review of all existing neuromorphic analog VLSI systems for visual motion sensing, Analog VLSI Circuits for the Perception of Visual Motion is a unique reference for advanced students in electrical engineering, artificial intelligence, robotics and computational neuroscience. It will also be useful for researcher, professionals, and electronics engineers working in the field.
"About this title" may belong to another edition of this title.
Seller: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_381584590
Seller: Anybook.com, Lincoln, United Kingdom
Condition: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,700grams, ISBN:9780470854914. Seller Inventory # 7098173
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 1524400-n
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. The analysis of biological neural systems, especially for visual processing, has allowed engineers to better understand how complex networks can effectively process large amounts of information, whilst dealing with difficult computational challenges. Analog and parallel processing are key characteristics of biological neural networks. Analog VLSI circuits using the same features can therefore be developed to emulate brain-style processing. Using standard CMOS technology, they can be cheaply manufactured, permitting efficient industrial and consumer applications in robotics and mobile electronics. This book explores the theory, design and implementation of analog VLSI circuits, inspired by visual motion processing in biological neural networks. Using a novel approach pioneered by the author himself, Stocker explains in detail the construction of a series of electronic chips, providing the reader with a valuable practical insight into the technology. Analog VLSI Circuits for the Perception of Visual Motion: analyses the computational problems in visual motion perception;examines the issue of optimization in analog networks through high level processes such as motion segmentation and selective attention;demonstrates network implementation in analog VLSI CMOS technology to provide computationally efficient devices;sets out measurements of final hardware implementation;illustrates the similarities of the presented circuits with the human visual motion perception system;includes an accompanying website with video clips of circuits under real-time visual conditions and additional supplementary material. With a complete review of all existing neuromorphic analog VLSI systems for visual motion sensing, Analog VLSI Circuits for the Perception of Visual Motion is a unique reference for advanced students in electrical engineering, artificial intelligence, robotics and computational neuroscience. It will also be useful for researchers, professionals, and electronics engineers working in the field. Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780470854914
Seller: BennettBooksLtd, San Diego, NV, U.S.A.
Hardcover. Condition: New. In shrink wrap. Looks like an interesting title! Seller Inventory # Q-047085491X
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 1524400-n
Quantity: Over 20 available
Seller: Ubiquity Trade, Miami, FL, U.S.A.
Condition: New. Brand new! Please provide a physical shipping address. Seller Inventory # 9780470854914
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 1524400
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 1524400
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA787047085491X6
Quantity: 1 available