Items related to Neural-Based Orthogonal Data Fitting: The EXIN Neural...

Neural-Based Orthogonal Data Fitting: The EXIN Neural Networks (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control) - Hardcover

 
9780471322702: Neural-Based Orthogonal Data Fitting: The EXIN Neural Networks (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control)

Synopsis

The presentation of a novel theory in orthogonal regression

The literature about neural-based algorithms is often dedicated to principal component analysis (PCA) and considers minor component analysis (MCA) a mere consequence. Breaking the mold, Neural-Based Orthogonal Data Fitting is the first book to start with the MCA problem and arrive at important conclusions about the PCA problem.

The book proposes several neural networks, all endowed with a complete theory that not only explains their behavior, but also compares them with the existing neural and traditional algorithms. EXIN neurons, which are of the authors' invention, are introduced, explained, and analyzed. Further, it studies the algorithms as a differential geometry problem, a dynamic problem, a stochastic problem, and a numerical problem. It demonstrates the novel aspects of its main theory, including its applications in computer vision and linear system identification. The book shows both the derivation of the TLS EXIN from the MCA EXIN and the original derivation, as well as:

  • Shows TLS problems and gives a sketch of their history and applications

  • Presents MCA EXIN and compares it with the other existing approaches

  • Introduces the TLS EXIN neuron and the SCG and BFGS acceleration techniques and compares them with TLS GAO

  • Outlines the GeTLS EXIN theory for generalizing and unifying the regression problems

  • Establishes the GeMCA theory, starting with the identification of GeTLS EXIN as a generalization eigenvalue problem

In dealing with mathematical and numerical aspects of EXIN neurons, the book is mainly theoretical. All the algorithms, however, have been used in analyzing real-time problems and show accurate solutions. Neural-Based Orthogonal Data Fitting is useful for statisticians, applied mathematics experts, and engineers.

"synopsis" may belong to another edition of this title.

About the Author

GIANSALVO CIRRINCIONE, PHD, is an assistant professor at the University of Picardie-Jules Verne, Amiens, France. His current research interests are neural networks, data analysis, computer vision, intelligent control, applied mathematics, brain models, and system identification. E-mail address: exin@u-picardie.fr

MAURIZIO CIRRINCIONE, PHD, is a full professor of control and signal processing at the University of Technology of Belfort-Montbéliard, France. His current research interests are neural networks, modeling and control, system identification, data analysis, intelligent control, and electrical machines and drives. E-mail address: maurizio.cirrincione@utbm.fr

From the Back Cover

The presentation of a novel theory in orthogonal regression

The literature about neural-based algorithms is often dedicated to principal component analysis (PCA) and considers minor component analysis (MCA) a mere consequence. Breaking the mold, Neural-Based Orthogonal Data Fitting is the first book to start with the MCA problem and arrive at important conclusions about the PCA problem.

The book proposes several neural networks, all endowed with a complete theory that not only explains their behavior, but also compares them with the existing neural and traditional algorithms. EXIN neurons, which are of the authors' invention, are introduced, explained, and analyzed. Further, it studies the algorithms as a differential geometry problem, a dynamic problem, a stochastic problem, and a numerical problem. It demonstrates the novel aspects of its main theory, including its applications in computer vision and linear system identification. The book shows both the derivation of the TLS EXIN from the MCA EXIN and the original derivation, as well as:

  • Shows TLS problems and gives a sketch of their history and applications

  • Presents MCA EXIN and compares it with the other existing approaches

  • Introduces the TLS EXIN neuron and the SCG and BFGS acceleration techniques and compares them with TLS GAO

  • Outlines the GeTLS EXIN theory for generalizing and unifying the regression problems

  • Establishes the GeMCA theory, starting with the identification of GeTLS EXIN as a generalization eigenvalue problem

In dealing with mathematical and numerical aspects of EXIN neurons, the book is mainly theoretical. All the algorithms, however, have been used in analyzing real-time problems and show accurate solutions. Neural-Based Orthogonal Data Fitting is useful for statisticians, applied mathematics experts, and engineers.

From the Inside Flap

The presentation of a novel theory in orthogonal regression

The literature about neural-based algorithms is often dedicated to principal component analysis (PCA) and considers minor component analysis (MCA) a mere consequence. Breaking the mold, Neural-Based Orthogonal Data Fitting is the first book to start with the MCA problem and arrive at important conclusions about the PCA problem.

The book proposes several neural networks, all endowed with a complete theory that not only explains their behavior, but also compares them with the existing neural and traditional algorithms. EXIN neurons, which are of the authors' invention, are introduced, explained, and analyzed. Further, it studies the algorithms as a differential geometry problem, a dynamic problem, a stochastic problem, and a numerical problem. It demonstrates the novel aspects of its main theory, including its applications in computer vision and linear system identification. The book shows both the derivation of the TLS EXIN from the MCA EXIN and the original derivation, as well as:

  • Shows TLS problems and gives a sketch of their history and applications

  • Presents MCA EXIN and compares it with the other existing approaches

  • Introduces the TLS EXIN neuron and the SCG and BFGS acceleration techniques and compares them with TLS GAO

  • Outlines the GeTLS EXIN theory for generalizing and unifying the regression problems

  • Establishes the GeMCA theory, starting with the identification of GeTLS EXIN as a generalization eigenvalue problem

In dealing with mathematical and numerical aspects of EXIN neurons, the book is mainly theoretical. All the algorithms, however, have been used in analyzing real-time problems and show accurate solutions. Neural-Based Orthogonal Data Fitting is useful for statisticians, applied mathematics experts, and engineers.

"About this title" may belong to another edition of this title.

Buy Used

Condition: As New
Like New
View this item

US$ 33.84 shipping from United Kingdom to U.S.A.

Destination, rates & speeds

Search results for Neural-Based Orthogonal Data Fitting: The EXIN Neural...

Stock Image

Cirrincione, Giansalvo, Cirrincione, Maurizio
Published by Wiley, 2010
ISBN 10: 0471322709 ISBN 13: 9780471322702
Used Hardcover

Seller: Mispah books, Redhill, SURRE, United Kingdom

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA75404713227096

Contact seller

Buy Used

US$ 289.96
Convert currency
Shipping: US$ 33.84
From United Kingdom to U.S.A.
Destination, rates & speeds

Quantity: 1 available

Add to basket