Nonlinear Bayesian modelling is a relatively new field, but one that has seen a recent explosion of interest. Nonlinear models offer more flexibility than those with linear assumptions, and their implementation has now become much easier due to increases in computational power. Bayesian methods allow for the incorporation of prior information, allowing the user to make coherent inference. Bayesian Methods for Nonlinear Classification and Regression is the first book to bring together, in a consistent statistical framework, the ideas of nonlinear modelling and Bayesian methods.
* Focuses on the problems of classification and regression using flexible, data-driven approaches.
* Demonstrates how Bayesian ideas can be used to improve existing statistical methods.
* Includes coverage of Bayesian additive models, decision trees, nearest-neighbour, wavelets, regression splines, and neural networks.
* Emphasis is placed on sound implementation of nonlinear models.
* Discusses medical, spatial, and economic applications.
* Includes problems at the end of most of the chapters.
* Supported by a web site featuring implementation code and data sets.
Primarily of interest to researchers of nonlinear statistical modelling, the book will also be suitable for graduate students of statistics. The book will benefit researchers involved inregression and classification modelling from electrical engineering, economics, machine learning and computer science.
"synopsis" may belong to another edition of this title.
David G. T. Denison and Christopher C. Holmes are the authors of Bayesian Methods for Nonlinear Classification and Regression, published by Wiley.
Nonlinear Bayesian modelling is a relatively new field, but one that has seen a recent explosion of interest. Nonlinear models offer more flexibility than those with linear assumptions, and their implementation has now become much easier due to increases in computational power. Bayesian methods allow for the incorporation of prior information, allowing the user to make coherent inference. Bayesian Methods for Nonlinear Classification and Regression is the first book to bring together, in a consistent statistical framework, the ideas of nonlinear modelling and Bayesian methods.
* Focuses on the problems of classification and regression using flexible, data-driven approaches.
* Demonstrates how Bayesian ideas can be used to improve existing statistical methods.
* Includes coverage of Bayesian additive models, decision trees, nearest-neighbour, wavelets, regression splines, and neural networks.
* Emphasis is placed on sound implementation of nonlinear models.
* Discusses medical, spatial, and economic applications.
* Includes problems at the end of most of the chapters.
* Supported by a web site featuring implementation code and data sets.
Primarily of interest to researchers of nonlinear statistical modelling, the book will also be suitable for graduate students of statistics. The book will benefit researchers involved in regression and classification modelling from electrical engineering, economics, machine learning and computer science.
Nonlinear Bayesian modelling is a relatively new field, but one that has seen a recent explosion of interest. Nonlinear models offer more flexibility than those with linear assumptions, and their implementation has now become much easier due to increases in computational power. Bayesian methods allow for the incorporation of prior information, allowing the user to make coherent inference. Bayesian Methods for Nonlinear Classification and Regression is the first book to bring together, in a consistent statistical framework, the ideas of nonlinear modelling and Bayesian methods.
* Focuses on the problems of classification and regression using flexible, data-driven approaches.
* Demonstrates how Bayesian ideas can be used to improve existing statistical methods.
* Includes coverage of Bayesian additive models, decision trees, nearest-neighbour, wavelets, regression splines, and neural networks.
* Emphasis is placed on sound implementation of nonlinear models.
* Discusses medical, spatial, and economic applications.
* Includes problems at the end of most of the chapters.
* Supported by a web site featuring implementation code and data sets.
Primarily of interest to researchers of nonlinear statistical modelling, the book will also be suitable for graduate students of statistics. The book will benefit researchers involved in regression and classification modelling from electrical engineering, economics, machine learning and computer science.
"About this title" may belong to another edition of this title.
Seller: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_345552397
Seller: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Hardcover. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Seller Inventory # G0471490369I4N00
Seller: Second Story Books, ABAA, Rockville, MD, U.S.A.
Hardcover. First Edition. Octavo, 277 pages. In Very good condition. Blue spine with white lettering. Full binding in blue paper with red details. Boards show mild shelf wear and minor fraying to top corners. Text block clean. Note: Shelved in Netdesk Column F, ND-F. 1378576. FP New Rockville Stock. Seller Inventory # 1378576
Seller: DeckleEdge LLC, Albuquerque, NM, U.S.A.
hardcover. Condition: new. Seller Inventory # Shelfdream0471490369
Seller: Classics Books, Trenton, NJ, U.S.A.
Hardcover. Condition: Fine. No Jacket. Wiley Series in Probability an Statistics. Seller Inventory # 006733
Seller: Toscana Books, AUSTIN, TX, U.S.A.
Hardcover. Condition: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Seller Inventory # Scanned0471490369
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9780471490364
Quantity: 15 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 85178-n
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580224780
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 85178-n
Quantity: Over 20 available