New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.
VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE!
http://www.wiley.co.uk/commstech/
VISIT OUR WEB PAGE!
http://www.wiley.co.uk/
"synopsis" may belong to another edition of this title.
Danilo Mandic from the Imperial College London, London, UK was named Fellow of the Institute of Electrical and Electronics Engineers in 2013 for contributions to multivariate and nonlinear learning systems.
Jonathon A. Chambers is the author of Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, published by Wiley.
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.
"About this title" may belong to another edition of this title.
US$ 12.00 shipping from Japan to U.S.A.
Destination, rates & speedsSeller: Corner of a Foreign Field, Tokyo, TOKYO, Japan
Hardcover. Condition: Very Good. No Jacket. 1st Edition. 2001.Hardcover.Very good condition.285 pages.Ships from Japan.Usually ships in 1-2 working days. Seller Inventory # 384501
Quantity: 1 available
Seller: Modernes Antiquariat an der Kyll, Lissendorf, Germany
hardcover. Condition: Sehr gut. Buch ist leicht verlagert (längs durchgebogen), kleine Lagerspuren am Buch, Inhalt einwandfrei und ungelesen 238113 Sprache: Englisch Gewicht in Gramm: 740. Seller Inventory # 219249
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_406332204
Quantity: 1 available
Seller: BennettBooksLtd, North Las Vegas, NV, U.S.A.
hardcover. Condition: New. In shrink wrap. Looks like an interesting title! Seller Inventory # Q-0471495174
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 33152-n
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9780471495178
Quantity: 15 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 33152
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 33152-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780471495178_new
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters. Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nestingExamines stability and relaxation within RNNsPresents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisationStudies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iterationDescribes strategies for the exploitation of inherent relationships between parameters in RNNsDiscusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications. VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE! VISIT OUR WEB PAGE! / Neural networks consist of interconnected groups of neurones which function as processing units. Through the application of neural networks, the capabilities of conventional digital signal processing techniques can be significantly enhanced to meet the demands of new technologies such as mobile communications, robotics and medical instrumentation. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780471495178
Quantity: 1 available