Practical Foundations of Mathematics explains the basis of mathematical reasoning both in pure mathematics itself (algebra and topology in particular) and in computer science. In addition to the formal logic, this volume examines the relationship between computer languages and "plain English" mathematical proofs. The book introduces the reader to discrete mathematics, reasoning, and categorical logic. It offers a new approach to term algebras, induction and recursion and proves in detail the equivalence of types and categories. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries across universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.
"synopsis" may belong to another edition of this title.
This book is about the basis of mathematical reasoning both in pure mathematics itself (particularly algebra and topology) and in computer science (how and what it means to prove correctness of programs). It contains original material and original developments of standard material, so it is also for professional researchers, but as it deliberately transcends disciplinary boundaries and challenges many established attitudes to the foundations of mathematics, the reader is expected to be open minded about these things.
"Taylor paints rhapsodically on a broad, richly detailed canvas replete with examples and exercises. He invites readers to dip in at any point and structures his book accordingly. He embroiders his text with a running commentary that often fascinates...this book covers important ground in an original style." Choice
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want