This book presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-Davenport-Schinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed.
"synopsis" may belong to another edition of this title.
Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This 1991 book presents a study of problems related to arrangements of lines or curves in the plane.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580245958
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9780521168472
Quantity: 10 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Paperback. Condition: new. Paperback. Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-DavenportSchinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book. Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of problems related to arrangements of lines or curves in the plane. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780521168472
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 470. Seller Inventory # C9780521168472
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 293 pages. 9.00x5.20x0.80 inches. In Stock. This item is printed on demand. Seller Inventory # __0521168473
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. Seller Inventory # 9780521168472
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of problems rel. Seller Inventory # 446928488
Quantity: Over 20 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condition: new. Paperback. Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-DavenportSchinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book. Several geometric problems can be formulated in terms of the arrangements of a collection of curves in a plane, making this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of problems related to arrangements of lines or curves in the plane. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9780521168472
Quantity: 1 available