Relational Knowledge Discovery - Hardcover

Müller, M. E.

 
9780521190213: Relational Knowledge Discovery

Synopsis

What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches.

"synopsis" may belong to another edition of this title.

About the Author

M. E. Mueller is a Professor of Computer Science at the Bonn-Rhein-Sieg University of Applied Sciences.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9780521122047: Relational Knowledge Discovery (Lecture Notes on Machine Learning)

Featured Edition

ISBN 10:  052112204X ISBN 13:  9780521122047
Publisher: Cambridge University Press, 2012
Softcover