The book deals with the many connections between matrices, graphs, diagraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorical properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix and Latin squares. The book ends by considering algebraic characterizations of combinatorical properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jorda Canonical Form.
"synopsis" may belong to another edition of this title.
This book, first published in 1991, is devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves.
"A reader who is familiar with basic results in matrix theory will surely be captivated by this concise self-contained introduction to graph theory and combinatorial ideas and reasoning." S. K. Tharthare, Mathematical Reviews
"...a major addition to the literature of combinatorics." W. T. Tutte, Bulletin of the American Mathematical Society
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: Better World Books, Mishawaka, IN, U.S.A.
Condition: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Seller Inventory # GRP102643957
Quantity: 1 available
Seller: Fireside Bookshop, Stroud, GLOS, United Kingdom
Cloth. Condition: Very Good. Dust Jacket Condition: Very Good. Reprint. Type: Book N.B. Small plain label to front paste down. Letter J stamped on title page. Corners of boards a little bumped. (MATHEMATICS). Seller Inventory # 300564
Quantity: 1 available
Seller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-A-003-03099
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580249745
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9780521322652
Quantity: Over 20 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Hardcover. Condition: new. Hardcover. This is the first book devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra. The book deals with the many connections between matrices, graphs, diagraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorical properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix and Latin squares. The book ends by considering algebraic characterizations of combinatorical properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jorda Canonical Form. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780521322652
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780521322652_new
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 377 pages. 9.50x6.25x1.00 inches. In Stock. This item is printed on demand. Seller Inventory # __0521322650
Quantity: 1 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. This is the first book devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra. The book deals with the many connections between matrices, graphs, diagraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorical properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix and Latin squares. The book ends by considering algebraic characterizations of combinatorical properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jorda Canonical Form. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9780521322652
Quantity: 1 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. This is the first book devoted to the exposition of combinatorial matrix theory. This subject concerns itself with the use of matrix theory and linear algebra in proving results in combinatorics (and vice versa), and with the intrinsic properties of matrices viewed as arrays of numbers rather than algebraic objects in themselves. There are chapters dealing with the many connections between matrices, graphs, digraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorial properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix, and Latin squares. The final chapter deals with algebraic characterizations of combinatorial properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jordan Canonical Form. The book is sufficiently self-contained for use as a graduate course text, but complete enough for a standard reference work on the basic theory. Thus it will be an essential purchase for combinatorialists, matrix theorists, and those numerical analysts working in numerical linear algebra. The book deals with the many connections between matrices, graphs, diagraphs and bipartite graphs. The basic theory of network flows is developed in order to obtain existence theorems for matrices with prescribed combinatorical properties and to obtain various matrix decomposition theorems. Other chapters cover the permanent of a matrix and Latin squares. The book ends by considering algebraic characterizations of combinatorical properties and the use of combinatorial arguments in proving classical algebraic theorems, including the Cayley-Hamilton Theorem and the Jorda Canonical Form. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780521322652
Quantity: 1 available