This work comprises a general study of symmetry breaking for compact Lie groups in the context of equivariant bifurcation theory. The author starts by extending the theory developed by Field and Richardson for absolutely irreducible representations of finite groups to general irreducible representations of compact Lie groups. In particular, the author allows for branches of relative equilibria and phenomena such as the Hopf bifurcation.
The author also presents a general theory of determinacy for irreducible Lie group actions along the lines previously described by Field in Equivariant Bifurcation Theory and Symmetry Breaking. In the main result of this work, it is shown that branching patterns for generic equivariant bifurcation problems defined on irreducible representations persist under perturbations by sufficiently high order non-equivariant terms.
The author gives applications of this result to normal form computations yielding, for example, equivariant Hopf bifurcations and shows how normal form computations of branching and stabilities are valid when taking account of the non-normalized tail.
"synopsis" may belong to another edition of this title.
US$ 18.07 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-00914 9780821804353 Sprache: Englisch Gewicht in Gramm: 150. Seller Inventory # 2484754
Quantity: 1 available