The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy-invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold. Then the authors present Solovyov's proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology. That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs.

*"synopsis" may belong to another edition of this title.*

Published by
American Mathematical Society
(2000)

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, 2000. Hardcover. Condition: New. Seller Inventory # DADAX0821813994

Published by
American Mathematical Society, United States
(2001)

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, United States, 2001. Hardback. Condition: New. Language: English. Brand new Book. The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy - invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold.Then the authors present Solovyov's proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology.That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs. Seller Inventory # AAN9780821813997

Published by
American Mathematical Society, United States
(2001)

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, United States, 2001. Hardback. Condition: New. Language: English . Brand New Book. The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy - invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold.Then the authors present Solovyov s proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology.That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs. Seller Inventory # AAN9780821813997

Published by
American Mathematical Society

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Hardcover
Quantity Available: 2

Seller:

Rating

**Book Description **American Mathematical Society. Hardback. Condition: New. New copy - Usually dispatched within 2 working days. Seller Inventory # B9780821813997

Published by
American Mathematical Society
(2000)

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, 2000. Condition: New. book. Seller Inventory # M0821813994

Published by
American Mathematical Society
(2000)

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Quantity Available: 2

Seller:

Rating

**Book Description **American Mathematical Society, 2000. HRD. Condition: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Seller Inventory # CE-9780821813997

Published by
Amer Mathematical Society
(2001)

ISBN 10: 0821813994
ISBN 13: 9780821813997

New
Hardcover
Quantity Available: 2

Seller:

Rating

**Book Description **Amer Mathematical Society, 2001. Hardcover. Condition: Brand New. 213 pages. 10.50x7.25x0.75 inches. In Stock. Seller Inventory # __0821813994