This is the first comprehensive introduction to the theory of mass transportation with its many--and sometimes unexpected--applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook.
In 1781, Gaspard Monge defined the problem of "optimal transportation" (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind.
Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology.
Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
"synopsis" may belong to another edition of this title.
Villani writes with enthusiasm, and his approachable style is aided by pleasant typography. The exposition is far from rigid. ... As an introduction to an active and rapidly growing area of research, this book is greatly to be welcomed. Much of it is accessible to the novice research student possessing a solid background in real analysis, yet even experienced researchers will find it a stimulating source of novel applications, and a guide to the latest literature. --Geoffrey Burton, Bulletin of the LMS
Cedric Villani's book is a lucid and very readable documentation of the tremendous recent analytic progress in `optimal mass transportation' theory and of its diverse and unexpected applications in optimization, nonlinear PDE, geometry, and mathematical physics. --Lawrence C. Evans, University of California at Berkeley
This is a very interesting book: it is the first comprehensive introduction to the theory of mass transportation with its many - and sometimes unexpected - applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. --Olaf Ninnemann for Zentralblatt MATH
"About this title" may belong to another edition of this title.
Shipping:
US$ 6.00
Within U.S.A.
Seller: Second Story Books, ABAA, Rockville, MD, U.S.A.
Hardcover. Reprint. Octavo, 378 pages. In Very Good minus condition. Yellow spine with blue text. Boards have scratching to both covers. Textblock clean. Shelved ND-E. 1378081. FP New Rockville Stock. Seller Inventory # 1378081
Quantity: 1 available
Seller: BooksRun, Philadelphia, PA, U.S.A.
Hardcover. Condition: Very Good. UK ed. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Seller Inventory # 082183312X-8-1
Quantity: 1 available