This classic book is based on lectures given by the author at the University of Chicago in 1956. The topics covered include, in particular, recurrence, the ergodic theorems, and a general discussion of ergodicity and mixing properties. There is also a general discussion of the relation between conjugacy and equivalence. With minimal prerequisites of some analysis and measure theory, this work can be used for a one-semester course in ergodic theory or for self-study. Readership Graduate students and research mathematicians interested in number theory. Table of Contents Introduction Examples Recurrence Mean convergence Pointwise convergence Comments on the ergodic theorem Ergodicity Consequences of ergodicity Mixing Measure algebras Discrete spectrum Automorphisms of compact groups Generalized proper values Weak topology Weak approximation Uniform topology Uniform approximation Category Invariant measures Invariant measures: the solution Invariant measures: the problem Generalized ergodic theorems Unsolved problems References
"synopsis" may belong to another edition of this title.
Hungarian-born Paul R. Halmos (1916–2006) is widely regarded as a top-notch expositor of mathematics. He taught at the University of Chicago and the University of Michigan as well as other universities and made significant contributions to several areas of mathematics including mathematical logic, probability theory, ergodic theory, and functional analysis.
"About this title" may belong to another edition of this title.
Seller: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condition: Fine. *Price HAS BEEN REDUCED by 10% until Monday, Dec. 1 (sale item)* *THIS IS THE 1956 CHELSEA PRINTING* 99 pp., hardcover, previous owner's name to the front paste down, else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Seller Inventory # ZB1334522