The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adele class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

*"synopsis" may belong to another edition of this title.*

Alain Connes, College de France, Paris, France,

"...the authors manage very well in filtering and presenting the central ideas whilst including a rich and precise list of references to the literature. ...will undoubtedly serve as an inspiration to the formidable mathematical question on the structure of the following two spaces: spacetime and the space of primes." ----Mathematical Reviews

*"About this title" may belong to another edition of this title.*

US$ 109.35

**Shipping:**
US$ 9.04

From United Kingdom to U.S.A.

Published by
American Mathematical Society

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society. Hardback. Condition: New. New copy - Usually dispatched within 2 working days. Seller Inventory # B9780821842102

Published by
American Mathematical Society, United States
(2008)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, United States, 2008. Hardback. Condition: New. Language: English. Brand new Book. The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces.The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory.The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adele class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function. Seller Inventory # AAN9780821842102

Published by
American Mathematical Society
(2007)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, 2007. HRD. Condition: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Seller Inventory # CE-9780821842102

Published by
American Mathematical Society, United States
(2008)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, United States, 2008. Hardback. Condition: New. Language: English. Brand new Book. The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces.The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory.The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adele class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function. Seller Inventory # AAN9780821842102

Published by
American Mathematical Society
(2007)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, 2007. Condition: New. book. Seller Inventory # M0821842102

Published by
Amer Mathematical Society
(2008)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **Amer Mathematical Society, 2008. Hardcover. Condition: Brand New. illustrated edition. 785 pages. 0.25x1.75x7.25 inches. In Stock. Seller Inventory # __0821842102

Published by
American Mathematical Society
(2007)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, 2007. Hardcover. Condition: New. Brand New!. Seller Inventory # VIB0821842102

Published by
American Mathematical Society
(2007)

ISBN 10: 0821842102
ISBN 13: 9780821842102

New
Hardcover
Quantity Available: 1

Seller:

Rating

**Book Description **American Mathematical Society, 2007. Hardcover. Condition: New. Never used!. Seller Inventory # P110821842102